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Abstract

The structural and functional change of shallow-water coral reefs is a reality that is still not fully understood. In many areas of 
the world, such as the Caribbean shallow waters, it has been shown that macroalgae,, sponges, and octocorals occupy the seascape 
left by stress-sensitive scleractinians, which did not resist human impacts. In this paper, we analyze different drivers for the cur-
rent-day resilience of one of the “winning” taxa, the octocorals, in the face of changing environmental conditions, paying attention 
to existing gaps in knowledge. The trophic plasticity of these organisms is recognised as one of the main traits responsible for their 
stability, allowing them to feed in a more generalist way, along with other biological characteristics (morphology, reproductive 
strategies, type of symbiont). To investigate the current state of trophic ecology in tropical octocorals, we reviewed 51 articles from 
2010 to 2022 to assess new information on this underexplored topic. We categorised data extracted from scientific articles by geo-
graphic regions associated with the study site, research objectives, sample collection depth, octocoral family studied, trophic ecol-
ogy, and impacts of human disturbances. Based on our results, we point out improvements required to obtain greater knowledge 
about the trophic ecology in octocorals: (A) Expand research on understudied geographic regions (e.g., Tropical Southwestern 
Atlantic); (B) Focus research in mesophotic areas; (C) Investigate the relationship between trophic ecology and reproduction, and 
describe the reproduction cycles of octocorals, linking mixotrophic inputs with energy storage strategies; (D) Analyze the effects 
of combined and synergistic human disturbances through ex situ and in situ experiments. Among the gaps of knowledge revealed 
in this perspective article,, expanding the knowledge about the energy budget processes is important for gaining a deep under-
standing of the potential resilience of reef octocorals in the face of global change and their role in future seascape composition.
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Introduction

The progress of the development of human society 
promotes serious pressures on marine life and has been 
causing long-term negative consequences on coral reefs, 
known as one of the planet’s most vulnerable ecosystems 
(Pandolfi et al., 2003; Hughes et al., 2017). Ocean tem-
perature increase, sea level rise, acidification, marine pol-
lution, overfishing, and land-use changes (Hughes et al., 
2003; Hoegh-Guldberg, 2011) are some human-induced 
disturbances responsible for generating profound chang-
es in tropical coral reefs (Carpenter et al., 2008; Doney 
et al., 2020). 

Many reef-building stress-sensitive scleractinians can-

not adapt to this stressful global situation (Hoegh-Guld-
berg et al., 2007) and, combined with synergistic human 
pressures, can harm their health (Eynaud et al., 2011). 
The significant evolutionary adaptation of scleractinians 
aimed at enhancing energy acquisition through symbiot-
ic photosynthesis (Enríquez et al., 2005), but made these 
corals more susceptible to bleaching and mortality due 
to their strong autotrophic dependence (Enrìquez et al., 
2017; Hughes et al., 2018). 

The decline of one functional group, such as 
reef-building corals, triggers an immediate response from 
other reef  groups that may be adapted to the changing 
conditions. This shift threatens the capacity to produce 
a massive, wave-resistant carbonate platform (Stoddart, 
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1969) and the ecosystem goods and services delivered by 
scleractinian corals, considered foundational organisms 
(Birkeland, 2015). Organisms that survive such environ-
mental changes can remain on reefs and even increase 
their populations (Norström et al., 2009), leading for 
example to phase shifts from scleractinians to octocor-
al dominance in some tropical regions (Hughes, 1994; 
Fabricius & Alderslade, 2001; Bell et al., 2021). In the 
Florida Keys, octocorals increased by 138%, 11 years 
after the 1998 El Niño (Ruzicka et al., 2013) and also 
are dominant in the Tropical Western Atlantic (Tsounis & 
Edmunds, 2017). 

The significant proliferation of octocorals in the Car-
ibbean, heralds a paradigm shift for reef ecosystems, em-
bodying the “new normal” (Lasker et al., 2020). Over the 
past several decades, there has been a noticeable decline 
of scleractinians reported in several coral reefs, accom-
panied by an increase in the abundance of octocorals, but 
this phenomenon is not yet fully understood by science 
(Norström et al., 2009; Lasker et al., 2020; Bell et al., 
2021).

Along with octocorals, there are also reports including 
other animal groups (e.g., Ascidiacea, Porifera, Zoantha-
ria, and Actiniaria) that are increasing in their presence in 
shallow reefs, altering the distribution of habitat-forming 
taxa, the composition of benthic assemblages, and con-
sequently the reef functioning (Sorte et al., 2010; Chen 
et al., 2011; Hughes et al., 2018; Bell et al., 2022). Fur-
thermore, climate change may be responsible for a higher 
thermal stratification in the global ocean (Li et al., 2020), 
intensifying ocean acidification, reducing ocean mixing, 
and impacting marine food webs. Consequently, some 
benthic filter feeders may as well be restricted due to low 
incoming energy (Rossi et al., 2019; Lesser & Slattery, 
2020). For decades, research studies have been alerting 

about the collapse of reef growth and the consequential 
loss of ecosystem goods and services. A fresh approach to 
the science, management, and governance of reef ecosys-
tems is urgently needed, considering adapting to forth-
coming environmental conditions (Hughes et al., 2017; 
Rossi et al., 2019; Denis et al., 2024).

Increases in octocoral abundance and distribution 
have been reported on Caribbean reefs over the last 25 
years (Ruzicka et al., 2013; Lasker et al., 2020; Edmunds 
& Lasker, 2022). However, whether octocoral traits fa-
vour their resilience or resistance and adaptations is still 
unclear. Autotrophic-heterotrophic balance and ener-
gy inputs, morphological variability and flexibility, fast 
growth rates responding to local environmental variabil-
ity, types of endosymbionts, sexual and asexual repro-
duction, resistance to emerging microbial diseases and 
the role of associated microbiota are important charac-
teristics for successful resilience in octocorals to survive 
against environmental and human-induced disturbances 
(Fig. 1) (Henry & Hart, 2005; Schubert et al., 2017; Weil 
et al., 2017; Lasker et al., 2020; McCauley et al., 2020; 
Rossi & Rizzo, 2021). 

Trophic plasticity (i.e., the capability to adapt the 
energy needs to the available autotrophic-heterotrophic 
inputs) is considered the main feature among the pre-
viously listed traits, providing a survival advantage to 
many octocoral species due to their capacity to use dif-
ferent nutrient sources to gain metabolic energy (Rossi 
et al., 2020; Pupier et al., 2021). Unlike scleractinians, 
they are less dependent on dinoflagellate endosymbionts 
(Symbiodiniaceae, Lajeunesse et al., 2018) in terms of 
organic matter translocation, enhanced nutrient acquisi-
tion through heterotrophy, compensating for the lack of 
autotrophy or even being an alternative when the photo-
autotrophic component is fully functional (Radice et al., 

Fig. 1: Octocoral traits that favor their resilience and adaptations compared to scleractinians.
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2019). This enables their capability to withstand stress 
conditions such as global warming, marine heat waves, 
and ocean acidification (Schubert et al., 2017). However, 
not all heterotrophic and mixotrophic octocoral species 
are immune to suffering impacts when subjected to high-
ly stressful conditions (Lasker et al., 2020), heterotrophy 
in octocorals may give a significant advantage in terms of 
survivorship (Denis et al., 2024). 

Nevertheless, there is a lack of information about the 
potential adaptability of this taxonomic group to the net 
trophic conditions, and such core information is neces-
sary to understand the future seascape composition (Ros-
si et al., 2019). The available data is far enough to un-
derstand a potential advantage from an energetic point of 
view of octocorals in front of scleractinians. Enhancing 
our understanding of the diverse species inhabiting var-
ious reef environments is crucial for anticipating future 
seascapes amid global environmental challenges (Rossi 
et al., 2017a). In tropical areas, where mixotrophic octo-
corals are dominant (Schubert et al., 2017), some efforts 
have been made to understand better the role of hetero-
trophy and autotrophy in their energy budgets (Ramsby 
et al., 2014; Baker et al., 2015; Rossi et al., 2017a; Rossi 
et al., 2020). It is evident, however, that there are many 
gaps of knowledge bridging core concepts like energy 
inputs and outputs (e.g., reproduction, growth, metabo-
lism, etc.), morphological performance or optimization 
of autotrophic and heterotrophic strategies that may an-
swer the potential succession in some tropical areas of 
scleractinians by these ecosystem engineering species 
(Tsounis & Edmunds, 2017). In this perspective article, 
we investigate the relationship between resilience and the 
trophic ecology of tropical octocorals. We focus on dis-
cussing recent advances over the last decade and demon-
strate core knowledge gaps for further research.

Trophic ecology linked to community shifts (scler-
actinian- to octocoral-dominated reefs)

On a healthy tropical shallow-water reef, octo-
corals (e.g., gorgonians), sponges, and scleractinians 
(reef-building hard corals) are the most common sessile 
animals (McFadden et al., 2010; Schubert et al., 2017; 
Lesser & Slattery, 2020). Scleractinians, as engineering 
species, play a major role in providing structural com-
plexity with their three-dimensional carbonate surfaces, 
maintaining key roles in reef ecosystems, and providing 
space, shelter, and food for associated high biodiversity 
(Srinivasan, 2003; Sale et al., 2005; Raes et al., 2007; 
Wild et al., 2011). They grow with a stable calcium car-
bonate framework (Bellwood & Hughes, 2001; Pratchett 
et al., 2015) that provides the capacity to form a massive, 
wave-resistant rigid platform (Stoddart, 1969). More-
over, reef rugosity is associated with a high abundance 
of reef fishes (McClanahan & Shafir, 1990), supporting 
tourism and fishing activities (Wilkinson, 1996). They 
can also create geological structures that may become 
islands ornature-based coastal barriers. In other words, 
there are many benefits offered by a healthy reef-build-

ing coral framework that is crucial for the maintenance 
of marine life in the tropical ecosystem and, in addition, 
supports ecosystem goods and services that contribute to 
the livelihoods of tens of millions of people worldwide 
(Moberg & Folke, 1999).

Gorgonians and sponges also act as ecosystem en-
gineering species (Wild et al., 2011; Maldonado et al., 
2017; Rossi et al., 2017a), but their functionality and eco-
system services provided are very different from those of 
reef building scleractinians (Paoli et al., 2017). They will 
not protect coastal areas from high-energy events such as 
storms or hurricanes (Ferraio et al., 2014) and they po-
tentially have less capability to immobilize carbon during 
long periods (Rossi & Rizzo, 2020), for example. Their 
ability to optimize light harvesting but having a non-ne-
glectable heterotrophic input even in nutrient-poor and 
warm environments let them expand worldwide (Ferri-
er-Pagès et al., 2015; Rossi et al., 2019). Consequently, 
their role in biogeochemical cycles will be very different 
from scleractinians (Wild et al., 2011; Lesser & Slattery, 
2020). Octocorals create forest habitats for other mobile 
and sessile reef species, but they do not create a hard and 
solid carbonate structure like scleractinians and hydro-
corals (Jones et al., 1994; Wolff et al., 1999). They are 
thus not considered carbonate reef-building organisms 
(Schubert et al., 2017; Steinberg et al., 2022). It is thus 
clear that the impact on the provision of ecosystem ser-
vices by octocoral-dominated reefs represents a threat to 
the sustainability of essential sectors, including fishing, 
food security, coastal protection, and tourism (Baste & 
Watson al., 2022).

In particular, focusing on the carbon cycle, a huge dis-
advantage in the octocoral spreading is related to the reef’s 
function of carbon immobilization (Coppari et al., 2019), 
also observed in sponges (Coppari et al., 2016), and other 
active and passive benthic suspension feeders (Rossi & 
Rizzo, 2021). They together capture and immobilize CO2 
from the atmosphere of both organic and inorganic forms 
(Nellemann et al., 2009) directly through photosynthesis 
of the symbiotic cells or indirectly because of the ingest-
ing of particles. Their contribution of photosynthetically 
fixed carbon provided by dinoflagellate endosymbionts to 
their host is different between species, being lower car-
bon flux and the carbon immobilized derived from photo-
synthesis in octocorals than in scleractinians (Fabricius & 
Klumpp, 1995; Ferrier-Pagès et al., 2015).

Most shallow tropical corals have a symbiotic rela-
tionship with Symbiodiniaceae (Wild et al., 2011; La-
jeunesse et al., 2018), translocating photosynthates to 
their hosts in oligotrophic waters (Muscatine & Porter, 
1977). Under stressful environmental conditions (e.g., 
heatwaves or organic pollution), the symbiosis is affect-
ed, with a decrease in the photobiological activity and 
energy supply to the coral host that needs to be compen-
sated in other ways (Brown, 1997), such as increasing 
heterotrophic inputs (Douglas, 2003; Baker et al., 2008). 
Nutritional losses may occur, triggering immunological 
and nutritional reduction, which could lead to the death of 
the host if the corals are unable to recover after stopping 
the stressful cause (Denis et al., 2024). The adaptability 
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of stress-sensitive scleractinians to ocean warming seems 
to be much restricted by their morphology and associated 
light scattering (Enríquez et al., 2005; 2017). Therefore, 
it is important to understand the advantages and draw-
backs of octocoral to coral reefs in terms of heterotroph-
ic and autotrophic inputs (Rossi et al., 2020) and their 
photobiological performance (Rambsy et al., 2014; Rossi 
et al., 2018) to understand the possible transformation 
of the reef seascape. This information is still scarce and 
needs an in-depth understanding of different areas, depths 
and morphologically different species.

Octocorals are much less dependent on photosyn-
thetic endosymbionts than scleractinians (Fabricius & 
Klumpp, 1995) as indicated, for example, by the lower 
contribution of autotrophically acquired carbon to octo-
coral respiration values (CZAR) in octocorals with Sym-
biodiniaceae (Fabricius & Dommisse, 2000; Derviche et 
al., 2021), which contributes to their resistance to many 
disturbances (Baker & Romanski, 2007) such as high 
temperatures (Jaap, 1979), high light intensity, salinity 
stress (Hoegh-Guldberg & Smith, 1989), and diseases 
(Kushmaro et al., 1998). The three-dimensional struc-
ture with octocoral polyps is an advantageous feature to 
capturing particles from the water column and provides a 
greater possibility of obtaining food (Gili & Coma, 1998) 
through a heterotrophic carbon input (Ramsby & Gou-
let, 2019; Rossi et al., 2020). They also are trophically 
plastic, acquiring nutrients through autotrophic (symbi-
onts) and heterotrophic (zooplankton, particulate detrital 
organic matter, phytoplankton or dissolved compounds) 
feeding (Fabricius & Klumpp, 1995; Rossi et al., 2020). 

Such performance enables them to maintain physio-
logical functions when autotrophy is reduced (Falcowski 
et al., 1984; Anthony et al., 2009), such as during severe 
bleaching events (Lasker, 2003; Prada et al., 2009) pre-

senting greater resistance than in scleractinian, surviving 
and recovering endosymbionts after extreme events such 
as marine heatwaves (Steinberg et al., 2022). They also 
can survive in mesotrophic-eutrophic tropical shallow 
waters (Fabricius & McCorry, 2006; Baker et al., 2010) 
enhancing their heterotrophic potential by increased reli-
ance on heterotrophic input during periods of decreased 
autotrophy in some polluted areas under urban nutri-
ent-laden runoff (Baker et al., 2015). Because of these 
abilities, octocorals start to dominate Caribbean tropical 
reefs, changing marine communities and having the po-
tential to spread to other reefs (Bell et al., 2021). 

Higher resilience of octocorals: Biological aspects ver-
sus environmental conditions

Based on the knowledge of the direct link between 
feeding characteristics and the permanence of corals in 
the benthic environment, trophic ecology research with 
octocorals is being carried out to answer questions that 
explain the permanence of these organisms, replacing 
some scleractinians in tropical regions. As a result, it 
was discovered that besides the trophic flexibility, other 
morpho-ecophysiological traits contribute as well to the 
permanence and proliferation of octocorals (Fig. 2). We 
list some of these here, some also found in stress-toler-
ant scleractinians: (a) symbiont acquisition by horizon-
tal transmission, promoting association with different 
symbionts than those of their parents (Lewis & Coffroth, 
2004; Fay & Weber, 2012); (b) polyp morphology with a 
high surface area (polyp and tentacle diameter) to volume 
ratio (SA/V) improve light-capturing ability and carbon 
autotrophic input (Porter, 1976; Lewis 1982; Rossi et al., 
2018); (c) enlargement of sclerites to increase the inter-

Fig. 2: Morpho-ecophysiological traits that also contribute to the permanence and proliferation of octocorals.
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nal light field (Prada et al., 2008; Rossi et al., 2018); (d) 
morphology (i.e., branching patterns, polyp size, spicule 
distribution, etc.) related to symbiont performance (Rossi 
et al., 2018); and (e) capability of gorgonians to modify 
symbiont and holobiont parameters (e.g., Chl-a concen-
tration per symbiont cell, number of symbiont cells per 
cm2, etc., Goulet et al., 2017).

The above-mentioned interpretations have scarce case 
studies, clearly lacking information to answer to such an 
Anthozoa substitution. Much research remains to be done 
to clearly understand what causes octocoral persistence in 
tropical regions, even those that do not depend that much 
on symbionts, but environmental conditions are known to 
have a very important role in their distribution (Fabricius 
& McCorry, 2006; Abad et al., 2022). Huge knowledge 
gaps (e.g., seasonal food inputs and trophic ecology of key 
reef gorgonians) in many aspects make it difficult to inter-
pret such ecological succession, as shown in our literature 
review, where we looked for recent publications that aimed 
to investigate the trophic ecology of tropical octocorals. 

In the search of recent publications carried out in three 
databases (Scopus, Web of Science, and ScienceDirect), 
between 2010 and 2022, we systematically observe the 
above-mentioned gaps of knowledge and others related 
to the potential role of trophic ecology in the success-
ful dominance of octocorals under certain circumstances. 
This recent period was selected due to a noticeable surge 
in articles addressing this topic in the last decade. Before 
starting the qualitative review, an unrestricted search was 
conducted, revealing a surge in relevant articles post-
2010. While significant works existed before this period, 
they were not as closely aligned with our focus. Further-
more, our aim in this perspective article was to acquire 
up-to-date insights into the research and methodologies 
employed in studying the trophic ecology of shallow 
tropical octocorals. The search strategy was limited to 
keywords in English, and each database had its word se-
quences according to its own rules. For Web of Science 
and Scopus, the search strings were performed using the 
keywords: (octocoral* OR Alcyonacea OR Gorgonacea 
OR “soft corals” OR “gorgonian”) AND (*trophy OR 

“trophic ecology” OR lipid OR carbohydrate OR physi-
ology OR nutri* OR diet OR “stable isotopes”). For Sci-
enceDirect, we used: (octocoral OR Alcyonacea OR Gor-
gonacea OR “soft corals” OR “gorgonian”) AND (trophy 
OR “trophic ecology” OR physiology OR nutrition).

In the beginning, we did not confine our search to a 
specific geographic region to explore the panorama of 
trophic ecology studies with octocorals in a global con-
text, resulting in a selection of 87 publications from vari-
ous regions worldwide. When comparing this result with 
publications on the trophic ecology of scleractinians, 
it was observed that the amount of research conducted 
with these hard corals is more substantial in its trophic 
ecology, health statuts and impact assessment than stud-
ies conducted with soft corals (e.g., gorgonians). This 
observation was confirmed when we conducted a search 
on Google Scholar using the specified keywords and 
changed “octocoral” to “scleractinian”. The difference in 
the generated results was three times greater, indicating 
how much remains to be understood about the ecophysi-
ology and trophic ecology of these organisms. However, 
since the focus of the respective article is on investigat-
ing publications conducted in tropical and subtropical re-
gions, we have selected 51 articles out of the 87 initially 
found (see Supplementary Material for further details). 

As a result, articles published in tropical and subtrop-
ical regions obtained on average, about four (4) articles 
were published per year, with 2012 being the year with the 
highest number of publications (n = 7), however, in the 
years 2011 and 2013 no publication was found. Based on 
the graph created with this result, it is possible to observe 
the increase in publications from 2016 onwards, which 
shows that research on this topic has been receiving more 
attention over the last few years and is expected to have 
an increasing trend (Fig. 3). We listed geographic regions 
associated with the study site, sample collection depth, 
target family of octocorals, trophic ecology, and research 
objectives to understand the relationship with the trophic 
ecology and ecophysiology of tropical octocorals.

Fig. 3: Number of published studies (trophic ecology of octocorals in tropical and subtropical coasts) included (left axis) in this 
review per year.
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Geographic regions associated with the study site

Observing the regions where the octocoral samples 
were collected for the research, we obtained the num-
ber of publications carried out according to provinces 
of Spalding et al. (2007). The Red Sea and the Gulf of 
Aden, and the Tropical Northwestern Atlantic (mainly in 
the Caribbean region) recorded the highest amounts of 
searches, corresponding to 31% (n = 16 from all 51 pub-
lications that collected offshore samples) and 29% (n = 
15) respectively. Next, Sunda Shelf was represented by 
17% (n = 9); South China Sea and Western Coral Triangle 
were represented by 5% publications (n = 3 each); Trop-
ical Northwestern Pacific in 4% (n=2); Western Indian 
Ocean, Lord Howe and Norfolk Islands, Tropical South-
ern Atlantic had the lowest representation, each appear-
ing in only one study (Fig. 4).

This demonstrates the importance of octocoral-dom-
inated reefs research in these regions, based on the en-
vironmental changes they are facing. On the other hand, 
only one publication represented the Tropical Southwest-
ern Atlantic, revealing a disproportionately applied effort 
on this topic. We want to highlight this point because this 
vast region has not yet been properly studied. 

Sample collection depth

The environmental conditions of the sites where octo-
coral sampling was conducted were not always described 
in the research studies. However, among the information 
reported, we can highlight data on the depth of sample 
collection. The vast majority (79%, n = 40) of the studies 
analyzed only octocorals that inhabited shallow waters 
(0.1 to 30 m depth), while 6% (n = 3) of the studies col-
lected samples from shallow and mesophotic waters (30 
to 150 m depth) and only 4% (n = 2) from only from 
the mesophotic area alone. Among all 51 articles, only 

11 reported water temperature data, which were recorded 
in locations ranging from 20°C to 37.7°C. Data on other 
environmental variables, such as salinity, were scarce or 
non-existent in most of the studies.

Target family of octocorals

Octocorals chosen for the development of research 
predominantly (around 90%) belong to the order Mala-
calcyonacea (new Alcyonacea), represented by 13 fam-
ilies across 46 publications: Gorgonidae, Plexaureliidae 
Nephtheidae, Lemnaliadae, Sarcophytidae, Sinulariidae, 
Carijoidae, Nephtheidae, Xeniidae, Paramuriceidae, 
Melithaeidae, Ellisellidae, and Isididae. Among these, 
the number of articles that focused on studying Plex-
aureliidae species stood out, which were present in 24 
publications. On the other hand, species from the order 
Scleralcyonacea were studied in about 10% of the arti-
cles, appearing in five publications and representing three 
species from the families Ellisellidae, Helioporidae, and 
Briareidae.

Trophic ecology

Identification of the trophic level of the species stud-
ied in the articles was not easy to obtain because they 
did not report the information. In the vast majority, spe-
cies were simply characterized with or without Symbi-
odiniaceae, with no specification of how they obtained 
food. Among the studies that presented trophic ecology, 
47.05% (24 publications) classified octocorals as mix-
otrophic, with tendencies toward either autotrophy or 
heterotrophy depending on the species. In 15.7% (8 pub-
lications), no information was provided about the trophic 
ecology of octocorals, or whether the species contained 
Symbiodiniaceae. In the other 37.2% (19 studies), spe-

Fig. 4: Number of publications (red circles) about trophic ecology of octocorals in Tropical and Subtropical regions, according to 
the provinces classification by Spalding et al. (2007).
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cies were identified as either strictly heterotrophic or 
strictly autotrophic.

Research objectives

Based on the principle that all selected articles involve 
octocoral trophic ecology, we tried to understand what 
the main objectives of the analyzed studies were. Some of 
them focused in investigating purely the trophic level and 
others aimed to combine this knowledge with other topics 
of interest involving octocorals, such as the evaluation 
of resistance to heating and bleaching, and efficiency as 
indicators of water quality and pollution. Thus, to better 
understand which scientific topics receive research atten-
tion and which are lacking, the objective of the studies 
was separated into three categories: 1) Research involv-
ing only aspects of trophic ecology, or with food strat-
egy, sources of nutrition, and nutritional strategy, were 
categorized as “trophic ecology”, corresponding to 23 
publications (45% of the total of 51 studies); 2) Studies 
evaluating the effects of impacts on the trophic ecolo-
gy of octocorals were classified under “Environmental 
Disturbances”, accounting for 31% (16 publications); 3) 
Other research objectives were less represented, such as 
“Bioindicators” (12%) and “Cultivation Purpose” (6%), 
while some categories (e.g., “Bioprospecting of Natural 
Products”, “Paleoceanography,” and “Reproduction”) 
were each addressed by only one article, corresponding 
to 2% each. 

Research evaluating the effects of impacts on the 
trophic ecology of octocorals, (“Environmental distur-
bances” category) began in 2012, though publications 
were limited, ranging from one to three per year. How-
ever, in 2022, the number of studies increased to five 
publications. Warming seawater and nutrient enrichment 

were the main human-induced impacts studied, alone or 
combined, but microplastics and bleaching impacts were 
also studied. Such an increase highlights the importance 
of understanding the role of octocorals in the future sea-
scape and the interest that, step by step, makes possible a 
better understanding of this taxon in the tropical ecosys-
tem functioning. 

Challenges in trophic and ecophysiological octocoral 
research in tropical and subtropical areas

Our review highlighted that research concentrates 
mainly in shallow waters of the Red Sea and the Tropical 
Northwestern Atlantic, focusing on the order Malacalcy-
onacea, but rarely presenting information on the trophic 
level of the studied species. Seawater temperature rise 
and nutrient enrichment are the main environmental im-
pacts addressed worldwide. Based on the results obtained 
in this article we suggest four main research directions to 
improve knowledge about octocorals and their biology 
(Fig. 5). 

A. Expanding research in under-studied geographic re-
gions 

Human-induced disturbances in marine ecosystems 
vary across different ecoregions, and the impacts of cli-
mate change will depend not only on the specific activi-
ties occurring in each region but also on the local adapta-
tion of octocoral species. These factors together shape the 
resilience potential of octocoral populations, influencing 
their ability to withstand and recover from environmental 
changes. Research on the trophic ecology of octocorals 
was concentrated in only a few ecoregions. The Caribbe-

Fig. 5: Recommended actions to improve knowledge about octocorals and their biology.
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an Sea has been going through profound ecological reef 
changes in recent decades (Gardner et al., 2003; Mora, 
2008), and some studies come from this area. Other plac-
es have been less studied (e.g., South Atlantic), so the 
information is scarcer. However, it has to be highlighted 
that the knowledge of octocoral ecology was neglected 
for decades (Lasker et al., 2020). Therefore, what can we 
say about other places that didn’t show phase shifts? 

Among these underrepresented regions, Southwestern 
Atlantic reefs off the Brazilian coast, serves as a prime ex-
ample. Home to the richest and largest reef complexes in 
the South Atlantic (Leão et al., 2016; Bastos et al., 2018) 
they form structures significantly different from the well-
known reef models (i.e., Caribbean and Indo-Pacific), 
with low coral richness and a high proportion of endemic 
species (Castro & Pires, 2001; Floeter et al., 2008). On 
3,000 km of the coast of Brazil, there is a rich, abundant, 
and endemic octocoral fauna, which is subject to vari-
ous human impacts, but little is known about how they 
behave with these changes. Coastal runoff and urban de-
velopment, tourism, trading of reef organisms, predatory 
fishing, the installation of industrial projects, and fossil 
fuels exploitation (Maÿal, 1986; Coutinho et al., 1993; 
Leão et al., 2003) in addition to recent threats like oil spill 
events (Soares et al., 2020) and microplastics (Corinald-
esi et al., 2021), are severe disturbances that promote oc-
tocoral vulnerability or abundance. The extent to which 
these factors influence octocoral populations remains un-
certain and requires further investigation through applied 
studies (Tsounis & Edmunds, 2017; Aued et al., 2018; 
Cant et al., 2024).

In the Southwestern Atlantic, octocoral habitats have 
high nutrients and moderate turbid waters, with particu-
lar environmental characteristics different from the olig-
otrophic and clear waters found in the Indo-Pacific and 
Caribbean areas (Mies et al., 2020). Although Brazilian 
coastal reefs experience coral bleaching episodes less 
frequently and with lower intensity compared to other 
regions (Mies et al., 2020), catastrophic declines in coral 
cover recently put in doubt the resilience of these reefs 
(Duarte et al., 2020). But as most attention is focused on 
hard corals (Leão et al., 2010), it remains unknown what 
happens with octocoral population adaptations, because 
they are not always so resistant and can also be threat-
ened by environmental conditions. Invasion of octocor-
al species into the Southwest Atlantic, Brazil, has insti-
gated profound and enduring alterations within benthic 
ecosystems, not only catalysing significant shifts in the 
composition, and dynamics of benthic communities, but 
also threatening macroalgal-dominated rocky reefs (La-
ges et al., 2012; Altvater & Coutinho, 2015; Menezes et 
al., 2021).

In tropical and subtropical coasts of Africa, as well as 
in extensive areas of Asia, increasing pressures have been 
observed threatening the reef species and mesophotic 
ecosystem (Soares et al., 2019). In Sodwana Bay, South 
Africa soft corals were more susceptible to bleaching than 
hard corals during 2000 and 2001 (Floros et al., 2004). 
However, as in the Southwest Coast of the Atlantic, a 
deep gap of knowledge is present in these areas, where 

very few references were found to include information 
about the presence/absence, taxonomic classification or 
distribution among habitats of these cnidarians (Pérez et 
al., 2016; Santos et al., 2016; Moura et al., 2023)

Knowledge about the trophic ecology of octocorals 
under different environmental conditions, such as ex-
treme and marginal reefs, will help to better understand 
their resistance, but also the study of what we consider 
“normal” reefs is deeply lacking in the scientific agen-
da. Unlike other tropical regions, in the South Atlantic, 
we have not yet been able to obtain an overview of the 
current or future prevalence of octocorals, nor even an es-
timation of their distribution and taxonomic description. 

B. Focusing in mesophotic areas 

The study in mesophotic areas has to be seen as an 
essential step needed to better understand the whole func-
tioning of habitat connections (Turner et al., 2019; Soares 
et al., 2020). Shallow and mesophotic reefs have many 
functioning and distribution aspects in common, but the 
differences regarding the shared species in terms of troph-
ic ecology and ecophysiology are still very scarce (Turn-
er et al., 2019). As seen in this review, very few stud-
ies investigate trophic ecology at mesophotic depths in 
tropical reefs. The study of octocorals at different depths 
made possible to identify heterotrophy capacity in shal-
low-water octocorals, showing that they are not restricted 
to autotrophy exclusively. Pupier et al. (2021) showed 
that these anthozoans are not restricted to heterotrophy in 
deeper areas, because octocoral performance of the same 
species could change depending on the depth, and conse-
quently, the conditions to which they are exposed, when 
considered in shallow and mesophotic habitats, but many 
more studies are needed to make a better comprehension 
of this point. 

In addition, mesophotic environments may present a 
greater richness of octocorals than shallow environments 
(e.g., in the Red Sea), contributing to increasing knowl-
edge about marine biodiversity (Shoham & Benayahu, 
2017). Making use of advanced technologies can facili-
tate research in deeper environments, collecting octocor-
als for trophic analysis using remotely operated vehicles 
(ROV) for example (Ferrier-Pagès et al., 2022), but we 
need more confrontation with shallow habitats to under-
stand how they will respond to climate change and how 
they behave in terms of trophic ecology. 

C. Investigating trophic ecology and reproduction

The heterotrophic nutrition of octocorals depends 
on the available food in the near bottom seston (Gili & 
Coma, 1998; Rossi & Gili, 2009). Such seston may have 
a different balance in their particles regarding carbohy-
drates, lipids and proteins (Grémare et al., 1997), and 
the alteration of these compounds can lead to difficulties 
in facing challenges, causing disease and even mortali-
ty (Imbs & Yakovleva, 2012; Scanes et al., 2018). The 
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reproductive process is linked to the nutrition of the spe-
cies, as there is a great demand for energy storage and li-
pids during this physiological stage, including the forma-
tion of eggs and planula larvae (Rinkevich, 1989; Arai et 
al., 1993; Ward, 1995; Rossi et al., 2006; Viladrich et al., 
2022a). Research that investigates gonadal development 
throughout the year and aspects of trophic ecology such 
as protein, carbohydrate and lipid content answer ques-
tions about the reproductive time and gonadal production 
(Gori et al., 2012), being a good tool to integrate seasonal 
and environmental factors. Carbohydrates, but especially 
lipids, are a very good indicator of species’ reproductive 
performance and health status after stress events (Rossi et 
al., 2017b), being one of the pendant gaps of knowledge 
that have to be addressed in tropical octocorals (Shirur 
et al., 2014). Thus, understanding the strategy used by 
octocorals to capture food must be considered, since 
reproduction is metabolically costly, and any alteration 
that occurs with the ability to store energy in the animal 
influences its reproductive efficiency (Gohar, 1940; Fab-
ricius & Alderslade, 2001; Rossi et al., 2017b). If there 
is a deficiency in particle capture or photobiological per-
formance, this biological process will also be limited and 
all its development will be harmed (Denis et al., 2024). 
In tropical seas, it has been shown that the seasonal cou-
pling with environmental and biological variables of the 
water column is essential to understanding the carbon 
and nitrogen fluxes (Rossi et al., 2020). However, there 
is still a long road to arrive and understand how such 
seasonality effectively affects octocoral life cycles and 
trophic constraints, as has been suggested in scleractini-
ans (Scheufen et al., 2017). In line with this energy input 
(feeding rates, photobiology) there has to be a strategy 
of energy output (i.e., the quantity of energy or carbon 
used to breath, reproduce, etc.) (Rossi et al., 2017b). In 
octocorals, reproductive strategies are surface brooding, 
internal brooding and broadcast spawning (Ribes et al., 
2007; Kahng et al., 2011). Regeneration abilities, high 
fecundity, and polyp pulsation are reproductive processes 
carried out by some octocorals that promote rapid reef 
colonization (Ben-David-Zaslow et al., 1999; Nadir et 
al., 2023). However, for the efficient development of 
these animals, the environmental conditions in which 
they are found must be suitable for their needs. Environ-
mental shifts or disturbances can alter the reproductive 
capacity of octocorals (Gori et al., 2007; 2013). Pollu-
tion, habitat destruction and climate change are respon-
sible for reducing the reproductive ability of gorgonians 
(Lin et al., 2012) and increases in water temperature can 
affect the reproductive capacity of octocorals species, 
acting differently between sexes (Arizmendi-Mejia et al., 
2015). Water warming causes a greater reduction in the 
number of fertile polyps in females of Paramuricea clav-
ata (Risso, 1827), but males did not react in the same way 
(Linares et al., 2008). To the best of our knowledge in 
tropical areas, few observations are scarce (De Putron & 
Ryland, 2009; Michaelik-Wagner & Willis, 2001), only 
shallow and mesophotic reproductive cycles have been 
described (Liberman et al., 2018) with light as a driver 
factor of potential changes in the water column (and thus 

the photosynthetic performance). 
Reproduction is compromised when animals are try-

ing to survive, as an energy that should be devoted to 
their natural biological processes, such as reproduction 
and growth, is being devoted to adapting to stressful con-
ditions (Brown & Bythell, 2005). Larval fitness depends 
on the mother’s care of female gorgonians and the energy 
transferred for the first life stages (Viladrich et al., 2017; 
2022a), but such an approach has been only barely con-
sidered during the last decades (Viladrich et al., 2022b). 
In the review carried out in Lasker et al. (2020), only one 
article assesses the effects on reproductive processes, 
trophic ecology and the effects on the next generations in 
tropical octocorals (Lin et al., 2012). The simplest infor-
mation, which is the reproductive cycle of the species, is 
lacking or very scarce (Kahng et al., 2011). 

Investigating how trophic ecology can affect the repro-
ductive capacity and the impact on the next generations 
of octocorals in different natural or simulated conditions 
is essential to obtaining knowledge about the ability of 
animals to perpetuate themselves (Liberman et al., 2018; 
Viladrich et al., 2022a), even more even in this current 
context of so many environmental threats to which they 
are subjected (Rossi et al., 2017b). 

D. Analyzing impacts on ecophysiology and metabolism

 As expected, there is a significant gap in knowledge 
regarding the consequences of combined disturbances on 
the physiological performance of octocorals, unlike scle-
ractinians, for which many studies document the harm-
ful effects of these disturbances, such as high mortality 
associated with oceanic events and ocean acidification 
(Hoegh-Guldberg et al., 2007). However, the gorgonian 
response to impacts appears to be species-specific, as ob-
served in the available literature.

Among the 16 reviewed articles that investigated the 
trophic ecology of octocorals in front of environmental 
impacts, the majority researched isolated impacts, mainly 
nutrient excess and water temperature increase. Only five 
analyzed combined stressors, also focused on the impacts 
of nutrient excess and warming increased. For example, 
octocorals were demonstrated to be impacted when sub-
jected to high temperatures and different dissolved N 
forms together, causing increased assimilation of N (Pu-
pier et al., 2021), when in high temperature and UVR 
Pseudoplexaura porosa (Houttuyn, 1772) and Eunicea 
tourneforti (Milne, Edwards & Haime, 1857) reduced the 
sclerite content and Symbiodiniaceae densities showing 
they have a greater ability to withstand future conditions 
of increasing temperature and acidification (McCauley et 
al., 2018). 

Octocorals are subjected to multiple stressors at the 
same time and, therefore, their ability to deal with them 
is not segmented: survival depends on their relationship 
with all of them at once (cumulative effect). Because of 
this, studies that aim to investigate the impacts on octocor-
als when subjected to stress factors together are needed, 
crucial to understanding the future of coral reefs (Goulet 
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et al., 2017). Octocorals exposed to various treatments in 
the laboratory can provide information regarding changes 
in growth (Enochs et al., 2016; Guzman et al., 2019), C 
and N content (Pupier et al., 2021), symbiotic dinoflag-
ellate density, lipids and FA composition (Imbs & Yak-
ovleva, 2012) and gonadal-energy storage (Gori et al., 
2013). During short or long-term experimental analyses, 
it is possible to insert stressing factors, and with observa-
tion, routinely see how octocorals respond to adversities 
(Bramanti et al., 2013; Gori et al., 2013), understanding 
the stages of these responses, following step by step the 
symptoms that organisms show over the time. However, 
the above-mentioned experiments have been made with 
warm temperate octocorals, not fully representative of 
what may happen in tropical or subtropical areas. This 
makes the initial detection of these symptoms think about 
the application of strategies to reverse or minimize the 
source of impact (Dellisanti et al., 2021). 

In laboratory experiments, however, environmental 
conditions are not the same with those the octocorals 
deal with in natural reef habitats. In the laboratory, one or 
two variables are usually applied, putting the animals in 
a challenge and observing how they act at the same time, 
but it is not possible to observe the cyclical fluctuations 
in the environmental conditions that the organisms face 
in the natural environment. Therefore, observing octo-
corals in their habitat of origin may be better if we can 
make an in situ approach, with punctual ecophysiologi-
cal methods (e.g., respiration, Coma et al., 2002) or with 
long-term-integrating variables such as the biochemical 
balance (Rossi et al., 2006). 

Such ecophysiological approaches are lacking in trop-
ical areas for octocorals (Schubert et al., 2017). Very few 
research groups consider this possibility, centred in a few 
coral reef areas such as the Red Sea or the Caribbean. 
The studies, for example, looking at respiration/produc-
tion only rarely make a seasonal approach in tropical ar-
eas (Rossi et al., 2020), being centred on experimental 
designs (Baker et al., 2015; Pupier et al., 2019). The use 
of the biochemical approach is also scarce in tropical oc-
tocorals, being also centred in a few areas and only rarely 
considering a seasonal approach (Ben-David Zaslow & 
Benayahu, 1999; Shirur et al., 2014; Pupier et al., 2021). 
Spatial-temporal studies are necessary to understand the 
capability of these species to optimize their reproduc-
tive output in terms of larval release and performance 
(Viladrich et al., 2017), being an essential path to under-
standing if they will be successful in the recruitment pro-
cesses. Such tools may be used to clarify the potential re-
sponse and adaptation to the fast-changing conditions of 
the water column and the associated physical-biological 
factors in different areas to clarify the potential gain, loss 
or maintenance of the populations due to climate change. 

Conclusions 

Based on our literature review, we have identified in 
this perspective paper, knowledge gaps that need to be 
filled to advance our understanding of trophic ecology 

in tropical octocorals. With the knowledge gained from 
these studies, it is possible to obtain more precise infor-
mation on the longevity and persistence of these organ-
isms in coral reefs, because the marine community shift 
caused by the overlap of these animals to the detriment of 
the scleractinians can have serious consequences. 

Our premise has been that learning about octocoral 
trophic ecology in tropical reefs is important to better 
understand their future role in reef areas in all regions 
and different habitat conditions. These animals have been 
living under environmental and direct human impacts for 
a long time and seem to have adapted well, according 
to the few studies carried out. There is still a range of 
tropical octocoral species that we do not have the slight-
est knowledge of. They inhabit different environmental 
conditions that need to be discovered and described, and 
we need to know how they are dealing with the current 
global situation. Octocorals and other stress-tolerant or-
ganisms could flourish in the short term in some places, 
but to what extent? This is why we need to rethink and 
update reef ecosystem management, which must adapt to 
the new changes, and for that, it is necessary to improve 
knowledge about the species that are changing the land-
scape of tropical and subtropical reefs. In this perspective 
article, we highlight some research that needs to be con-
ducted to provide insights into understanding the future 
trends of coral reefs and thus help public authorities in the 
development of new actions, encouraging more trophic 
ecology studies, to better understand how the octocor-
als are dealing with the speed and intensity of changes 
brought about by the Anthropocene. 
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