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We study how self-organization in systems showing complex spatiotemporal dynamics
can increase ecosystem resilience. We consider a general simple model that includes
positive feedback as well as negative feedback mediated by an inhibitor. We apply this
model to Posidonia oceanica meadows, where positive and negative feedbacks are well
documented, and there is empirical evidence of the role of sulfide accumulation, toxic
for the plant, in driving complex spatiotemporal dynamics. We describe a progressive
transition from homogeneous meadows to extinction through dynamical regimes that
allow the ecosystem to avoid the typical ecological tipping points of homogeneous
vegetation covers. A predictable sequence of distinct dynamical regimes is observed as
mortality is continuously increased: turbulent regimes, formation of spirals and wave
trains, and isolated traveling pulses or expanding rings, the latter being a harbinger
of ecosystem collapse, however far beyond the tipping point of the homogeneous
cover. The model used in this paper is general, and the results can be applied to other
plant—soil spatially extended systems, regardless of the mechanisms behind negative

and positive feedbacks.
resilience | plant-soil interactions | excitability | vegetation patterns | traveling pulses

Spatial self-organization serves as a resilience mechanism enhancing positive feedbacks
over negative feedbacks to enable ecosystems to persist even under adverse conditions
(1, 2). This phenomenon has often been studied in semiarid ecosystems that exhibit
stationary patterns or patterns that move along slopes (3-5), but much less is known
about systems presenting persistent self-sustained oscillations and excitable dynamics, as
observed, for example, in seagrass meadows (6, 7), soil fungus (8), high-altitude wetlands
(9) and salt marshes (10).

Excitable systems are characterized by having a linearly stable rest state that, when
subject to perturbations above a critical threshold, undergoes a large, transient excursion
through phase space before returning to the rest state. When extended in space, this
sensitivity to perturbations makes excitable media exhibit rich spatiotemporal behaviors.
Unlike static Turing patterns, which result from finite wavelength linear instabilities,
excitable media can generate a wide variety of dynamic spatial structures in response
to local perturbations. These structures include expanding rings, moving wavefronts,
spirals, and isolated traveling pulses (11-14).

Excitable media are ubiquitous across different branches of physics and biology. They
are critical in understanding signal propagation in neuroscience, where excitable dynamics
underlie neural firing and the propagation of action potentials in axons (15, 16). In cardiac
tissue, excitable behavior governs the heart’s electrical activity, with abnormal patterns
like spirals associated with life-threatening arrhythmias (14, 17). Excitable behavior also
manifests in chemical reaction—diffusion systems, with well-known examples like the
Belousov—Zhabotinsky reaction, where chemical waves and self-replicating spots have
been observed experimentally (11, 12, 18). Moreover, excitable systems are relevant
in photonics, where nonlinear optical cavities can exhibit several excitable behaviors
(19, 20).

Excitability has recently gained significant attention in ecology, particularly in the study
of complex spatiotemporal patterns in vegetation. In ecosystems, feedback mechanisms
between vegetation and the environment, such as resource availability or the accumulation
of toxins, can create conditions analogous to those in excitable media. Localized
disturbances in these systems can trigger vegetation to propagate as traveling waves,
spirals, or pulses, akin to the behavior observed in physical excitable systems. This
framework helps explain the resilience and collapse of ecosystems under environmental
stress, providing insights into vegetation dynamics. In particular, these systems appear to
align with what is known as Type-I excitability. This type of excitability does not require
large differences in time scales between system variables and allows excitable trajectories
toward the unpopulated solution without exhibiting negative population densities. More
details on excitability types are included in ST Appendix, Text.
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Fig. 1. Comparison of aerial images of P. oceanica patterns (A-D) with numerical simulations of Eq. 1 (E-H). From Left to Right: turbulent regime, target pattern
formed by two counterrotating spirals, wave trains, and expanding ring. Simulations are performed for (E) @ = —0.0016, (F) @ = 0.0016, (G) @ = 0.08, and (H)
® = 0.096. Other parameters: « = 1.6, = = 6.25. Simulation (F) is obtained from initial radial Gaussian plant and toxin distributions. The centers of the initial
Gaussians are shifted, breaking the rotational symmetry. The formation process of this structure, as well as aerial images of target patterns in different stages
of development, are included in S/ Appendix. Simulation (H) is obtained from an initial radial Gaussian plant distribution. Simulations (£ and G) are snapshots
of Fig. 3 at the corresponding value of w. Panels (A and D) are taken from high-resolution drone images at (39° 53’ 45, 1”N, 3° 04’ 54, 3”F) and (39° 53’ 53,0”N,
3° 04’ 55,0”E). Panels (B and C) are taken from Google Earth at (39° 54’ 18,0”N, 3° 06’ 20,2”E) and (32° 12 8,6”N, 23° 16’ 42, 5”E). Movies showing simulations

(E-H) can be found in Movies S3, S6, S8, and S9 respectively).

For example, the formation of vegetation rings has been
attributed to mechanisms such as water competition (21-25),
morpho-phenological factors (26), aeolian processes (25, 27),
and plant—soil feedbacks (28-31). The latter suggests that the
formation of these structures is driven by a negative feedback
mediated by an inhibitor, such as a harmful toxin or allelopathic
substance produced by the plants themselves. These substances
concentrate in the soil, increasing the mortality rate within the
population. A paradigmatic example is found in seagrass meadows
(6,7, 32), where the decomposition of organic matter into toxic
sulfide compounds acts as the inhibitor, promoting the formation
of rings and other spatiotemporal structures (6, 7, 33-37).

Similar mechanisms have been studied in other plant species
(9, 10, 38-43) and fungal systems (8, 44, 45). Applying the
concept of excitable behavior from physics to these ecological
systems provides a powerful tool to understand the complex
dynamics of vegetation, offering a broader perspective on the
processes that shape these ecosystems and the critical transitions
they may undergo under varying environmental conditions.

In this work, we study the transition from a homogeneous
vegetation cover to extinction as the mortality rate increases
in systems showing such complex spatiotemporal dynamics.
We use a prototypical model that includes positive feedback
and a negative feedback mediated by an inhibitor applicable
to a wide range of ecosystems, going from seagrasses and (not
necessarily water-deprived) terrestrial plants, to fungal colonies.
The emergent complex spatiotemporal structures enhance the
resilience of the ecosystem in that these dynamical structures
persist for mortality rates beyond those for which the ecosystem
can support a homogeneous vegetation cover.

The typical scenario, illustrated in Fig. 1 with model sim-
ulations and aerial images of Posidonia oceanica at different
locations, is as follows: For low mortality rates, the vegetation
cover is uniform (not shown); Increasing the stress on the system,
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the stationary homogeneous solution destabilizes to oscillations.
However, coherent oscillations, uniform or in the form of
traveling waves, are unstable and lead to a spatiotemporally
disordered state known as defect turbulence in the context of
the complex Ginzburg-Landau equation (CGLE)* (47) (Fig. 1
Aand E). When the mortality rate is increased further, coherent
oscillations in the form of spirals (Fig. 1 B and F) or periodic
trains of pulses (Fig. 1 C and G) form out of the turbulent
states, leading to more or less regular spatial structures. Multiple
solutions with different wavelengths coexist in this regime,
and the observed characteristic wavelength increases with stress.
Eventually, only isolated traveling pulses of vegetation, which
can form expanding rings in 2D (Fig. 1 D and H), survive until
the complete collapse of the vegetation is observed beyond the
ultimate tipping point. While this sequence reflects the dynamics
of the theoretical model when the mortality rate increases, other
environmental factors could differ between different locations,
partially influencing the observed patterns. However, the general
sequence of patterns is robust to parameter changes.

1. Model

To address this problem, we introduce a minimal model that
captures the essential mechanisms driving the formation of trav-
eling pulses, which represent the key resilient spatial structures
in the ecosystem. This model is based on two interacting fields:
P(x, y,t), which represents the density of plant population, and
T'(x, y,t), which represents the concentration of toxins in the
sediment. The dynamics of these two fields are governed by a

*In the CGLE, which describes the general spatiotemporal dynamics of spatial systems
close to an oscillatory onset, “turbulence” does not imply the same phenomenon as in
classical fluid dynamics, where it is associated with the transfer of energy across scales or
power-law scaling in spectral densities. Rather, in the CGLE framework, turbulence typically
refers to disordered, aperiodic, and incoherent (chaotic) spatiotemporal behavior (46).
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system of partial differential equations describing the feedback
between plant growth and toxin accumulation:

3P = (—w+aP — P> —T)P+ V?*P,
70,7 =P — T+ DyV?T. (1]

The parameters are defined as follows: w is the net mortality
rate, representing the balance between growth and mortality in
the absence of other plants or toxins. This parameter can be
influenced by environmental factors such as nutrient availability,
light, or temperature; @ is the ratio between positive and
negative feedback, capturing the plant’s growth enhancement
in response to increased local density; 7 is the timescale for toxin
accumulation and decay, reflecting the relative speed at which
toxins are produced by plants and removed from the environment
as compared to the plant growth timescale; and Dy is the ration
between the diffusion coefficient of the toxin and the diffusion
coefficient of the plant, that has been normalized to one (87
Appendix, Text). V? is the Laplacian operator that describes the
spatial diffusion of both plant density and toxin concentration in
sediment.

The first equation describes the local growth of the plant
population and its spread throughout the landscape due to
spatial diffusion. The model incorporates positive feedback,
which is considered to operate much faster than population
dynamics. This rapid feedback is effectively modeled as a positive
contribution to the total growth rate proportional to population
density. As a result, the total (density-dependent) growth rate
increases with population density at moderate values of P (due
to aP), where positive feedback dominates.

However, as the population density increases and approaches
the carrying capacity of the system, the term —P? takes over,
causing the growth rate to saturate. This interplay between
positive feedback and carrying capacity creates a nonmonotonic
density dependence on the total growth rate, a phenomenon
known as the Allee effect. In essence, at low densities, populations
benefit from positive feedback, but beyond a certain threshold,
resource competition limits further growth.

In addition to growth saturation, the equation for population
density also includes the negative impact of the toxin on plants,
represented by the term —7. The coefficients of these two
feedback terms, P? and 7', have been normalized to one for
simplicity, as their relative values can be absorbed into other
parameters without loss of generality (see SI Appendix, Text for
more details).

The equation for toxin concentration 7" is governed by two key
processes: toxin production, which we model as proportional to
the plant biomass density P, and toxin degradation, represented
by the term —7". Both the production and degradation rates are
normalized to one, defining the characteristic timescale of toxin
dynamics through the parameter 7, which we treat as a critical
control variable in our model. While nonlinear terms could be
justified in the toxin equation, especially given the complexity of
biological and chemical processes in real ecosystems, we adopt a
linear form to capture the core dynamics in a straightforward
manner. This allows us to focus on the general mechanism
of toxin-mediated feedback without unnecessary complexity.
Additionally, we assume no diffusion for the toxin (D7 = 0),
meaning toxins remain localized to areas where plants grow,
which is a reasonable approximation for substances confined to
the soil. Including toxin diffusion does not qualitatively change
the results as long as the toxin diffuses more slowly than the
plants (i.e., for small values of D).

PNAS 2025 Vol. 122 No. 11 e2412522122

Together, these equations capture the interaction between the
plants and their environment, particularly the inhibitory effects
of toxins on plant growth, which are crucial for the formation
of traveling pulses. The Allee effect in the plant dynamics and
the negative feedback loop between plant density and toxins
allow for complex spatiotemporal structures, including traveling
pulses, spiral waves, and expanding rings, which are characteristic
of excitable media (Fig. 1).

Throughout this study, we fix &« = 1.6 and 7 = 6.25,
values that are realistic for P. oceanica (see SI Appendix, Text for
parameter justification), and focus on exploring how changes in @
drive the system through various dynamical regimes. By adjusting
®, we can simulate transitions between homogeneous vegetation
states, complex dynamics, and collapse, providing insights into
the resilience of ecosystems under different environmental
stressors.

2. Model Analysis

In this section, we analyze the formation of spatiotemporal
resilient structures governed by Eq. 1, introducing the essential
mechanisms driving these patterns—positive feedback, mediated
negative feedback, and plant diffusion—step by step. These
elements together form the basis for understanding the complex
dynamics of the system. Subsequently, in Section 3, we will build
on the dynamical regimes explored here to illustrate the resilience
of an ecosystem described by this model in the context of global
change, where increasing mortality over time plays a central role.

2.1. Positive Feedback. Here, we consider the case 7 — 0, which
corresponds to the limit where the negative feedback from toxins
acts instantaneously. In this scenario, the equation for toxin
dynamics can be eliminated adiabatically, simplifying the system
so that both positive and negative feedback depend solely on
plant density. Biologically, this represents a situation in which the
toxin concentrations adjust so rapidly after changes in population
density that their transient effects can be neglected. As a result,
the interaction between plants due to toxins can be interpreted
as a direct negative feedback. In this limit, Eq. 1 simplifies to

3P = (—w+ (@ —1)P = PP + V?P, 2]

where the term (@ — 1)P captures the combined effects of the
positive and the negative feedback. It is important to note that
for the parameters relevant to P. oceanica the positive feedback
dominates the negative feedback due to toxins (¢ > 1), making
this term positive. Effectively, this means that we are considering
a system where positive feedback plays the primary role in driving
the dynamics for moderate plant densities.

Despite this simplification, Eq. 2 retains some of the essential
features needed for the formation of spatial structures in the
original system. Specifically, homogeneous steady states are the
same as those considering the toxin dynamics. This is because, in
these solutions, the toxin concentration is constant, and the value
of 7, which governs the toxin rate of change, becomes irrelevant.

In addition to the trivial (bare) homogeneous steady state
So = (Po, Tp) = (0, 0), Eq. 1 admits two nontrivial (populated)
homogeneous steady states
(a—1)*x/(a—1)? — 4o

S+ =P, Ty) = 5

(1,1), [3]

shown as green curves in the bifurcation diagram of Fig. 2A.
Since P is a plant density, only positive values are physically
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Fig. 2. Bifurcation diagrams of Eq. 1. (A-C) Maximum plant density of
different spatiotemporal solutions as a function of the mortality rate w. In (A)
only solutions of the system without space (temporal system) are shown for
7 = 0, corresponding to the case of a system with direct negative feedback.
Green lines correspond to steady populated solutions (S+) and black lines
to the bare state (Sp). Stable (unstable) solutions are represented by solid
(dashed) lines. Labeled dots indicate bifurcation points explained in the text.
Panel (B) extends to solutions with = = 0. In this case, the noninstantaneous
negative feedback mediated by toxins destabilizes S to homogeneous
temporal oscillations (PO). The solid blue line corresponds to the extreme
values of the limit cycle. Insets show the temporal evolution of plant density
and toxin concentration in the oscillatory (blue) and excitable (gray) regimes.
Panel (C) shows the bifurcation diagram of the full spatiotemporal system
and, in addition to the solutions of the temporal system (homogeneous
solutions), it includes traveling pulses on S_ (TP, purple lines), traveling
pulses on Sy (TP, red lines), and localized steady states on Sg (LSS, light blue
lines). Notice that considering space, PO are unstable. /nsets in panel (C) show
the spatial profiles of TP_ (purple), TPy (red), and LSS (light blue). Panel (D)
shows the phase diagram of wave trains. Depending on the mortality rate w,
wave trains with wavenumber k are stable (unstable) within the green (red)
shaded area. The existence region of wave trains is limited on the Left by
the marginal stability curve (MSC, light blue curve) where small amplitude
wave trains emerge from S and limited on the Right by a fold of wave
trains (green curve). The stability region (green shade) is delimited by an
Eckhaus instability (Eck, dark red curve). Solutions with k = 0 are marked
with color lines corresponding to those shown in panel (A). Note how k = 0
solutions can be homogeneous oscillatory solutions (PO, dark blue line) or
traveling pulses (TP_, purple line, and TPy, red line). The transitions between
these k = 0 solutions correspond to the bifurcations shown in panel (C),
indicated by vertical dotted gray lines. The Inset in panel (D) shows the profile
of a wave train with k = 0.25 for @ = 0.046, marked with a black dot in
the panel.
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meaningful. The states S4 emerge from a saddle-node bifurcation
at wgy = 0.09 (marked as SNV in Fig. 24) and exist only for
@ < wgy. For T = 0 the solution Sy is stable and the bare state
So changes stability in a transcritical bifurcation (black point in
Fig. 24) with the solution S_, which, when positive, is always a
saddle.

These two bifurcations divide the parameter space into three
regions: for w < 0 the system exhibits a weak Allee effect, where
S+ is the only stable solution, and any small initial plant density
will grow and populate the system. For 0 < @ < wgy the model
shows a strong Allee effect. In this case, there is a2 minimum
plant density, given by S_, below which the population collapses.
Densities above this threshold grow and stabilize to form a high-
density meadow, Sy (Fig. 24). Finally, for wsy < o, the only
stable solution is the bare state Sy and any initial plant population
will decay. Thus, when negative feedback is instantaneous (i.e.
7 = 0) the SN is the ecological tipping point for which the
homogeneous system goes extinct. Furthermore, no resilient
spatiotemporal structures form for this system, and no enhanced
resilience is possible in the absence of toxin dynamics.

The strong Allee effect observed in the model aligns with
empirical evidence in seagrass meadows in restoration attempts
(48), tipping points measured along stress gradients (49), and the
existence of bistability mechanisms (33, 50-53).

2.2. Noninstantaneous Negative Feedbacks in Homogeneous
Systems. When 7 is nonzero, the negative effect of population
growth is no longer instantaneous, but mediated by the dynamics
of the toxin concentration. This leads to a feedback loop in
the system. An increase in plant population, driven by positive
feedback, increases toxin production with a certain delay, which
in turn reduces plant density. The lower plant density then
decreases toxin production, allowing the plant population to
rise again thanks to the toxin degradation after a certain
time.

This feedback loop can destabilize S1 to oscillations through
a Hopf instability (blue dot in Fig. 2B), leading to stable periodic
oscillations (PO) of plant density and toxin concentration (see
the blue /nser in Fig. 2B), i.e. a limit cycle. The dark blue curve
in Fig. 2B represents the extreme values of the plant density
of this cycle. Increasing w, the amplitude of the cycle increases
until it reaches S_, i.e. the critical plant density of the strong Allee
effect, at its minimum. Once this threshold is reached the positive
density-dependent feedbacks are too weak for the population to
grow and the PO is destroyed in a saddle-loop bifurcation (a.k.a.
homoclinic bifurcation) for wgs; = 0.009, marked as SL (purple
dot) in Fig. 2B.

For values of w above wg;, the only stable solution of the
nonspatial system is bare soil, and the system exhibits excitable
behavior (see the gray Inser in Fig. 2B). In this regime a small
perturbation to the bare state decays, due to the strong Allee
effect (shown as dashed lines in the nser). However, a large
enough perturbation, exceeding a certain threshold (in this case
the stable manifold of S_) will grow driven by the positive
feedback, reaching a peak and, eventually, decaying back to
the bare solution due to toxin accumulation. One of these
excitable trajectories is shown with solid lines in the gray Inset in
Fig. 2B. Notice that initially, the plant density (in green) increases
faster than the toxin concentration (in orange). Eventually, the
plant density reaches a maximum, but due to the high toxin
concentration, it begins to decline. The toxin concentration also
starts to decrease, with some delay, but this decline is too slow
for the plants to recover.
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Paradoxically, increasing the timescale of negative feedback
(by raising 7) reduces the resilience of the system in the absence
of spatial dynamics. In this case, the excitable dynamics lead to
inevitable collapse, shifting the ecological tipping point, from a
saddle-node (SNV) bifurcation (as seen for T — 0) to a saddle-
loop (SL) bifurcation, which occurs at lower mortality rates. This
shift exemplifies the enrichment paradox (54), where changes that
appear to improve system viability actually destabilize it.

However, when spatiotemporal dynamics are introduced, self-
organizing processes emerge. Plants spread into areas with lower
toxin concentrations, continuously colonizing new regions while
leaving behind sparsely populated or barren zones with higher
toxin levels. This spatial redistribution enables the ecosystem to
achieve higher productivity compared to a homogeneous system.
It also allows the ecosystem to maintain high biomass levels, even
in situations where a nonspatial system would collapse beyond
both the S and SN thresholds showing enhanced resilience, as

will be discussed in Section 3.

2.3. Spatiotemporal Dynamics in the Full System. Before intro-
ducing the role of spatiotemporal dynamics in our system, it
is essential to emphasize key distinctions between our model
and others that also involve space in the formation of resilient
structures. In many traditional models, stationary patterns in veg-
etation arise through a finite-wavelength instability, commonly
known as a Turing instability. In plant-toxin activator-inhibitor
systems, this mechanism typically occurs when the inhibitor
(toxin) diffuses faster than the activator (plant density). In these
models, resilience is achieved through static population clusters
that maximize the benefits of (short-range) positive feedback
while minimizing the negative impact of (large-range) toxins
diffusing from neighboring clusters.

In contrast, in our model, where toxins are fixed in the

substrate-such as sulfides deposited during dead seagrass de-
composition, soil-borne diseases, or allelopathy processes—the
diffusion rate of the toxins is expected to be slower than that
of plants. As a result, the conditions for generating stationary
patterns via the Turing mechanism are not met. Nevertheless,
our model allows for the emergence of other spatiotemporal
structures, such as defect turbulence, and typical spatial structures
of excitable media, including spirals, wave trains, and traveling
pulses. These structures are dynamic and nonstationary, driven
by the plant’s capacity to spread into areas with low toxin
concentrations, creating resilience through movement rather than
static patterns.
2.3.1. Wave trains. When increasing @ above the Hopf bifur-
cation, a family of wave trains emerges (47, 55) (see the red
and green shaded regions in Fig. 2D). A wave train is a periodic
solution of the system that propagates in space with fixed velocity
and without changing its shape. An example of such a solution
is shown in the Inser in Fig. 2D. In natural meadows, these
structures will be seen as periodic stripes that drift over time
(Fig. 1C). Coexisting wave trains can be characterized by their
wavenumber £ = 27”, where A is the wavelength, the spatial
period of the wave. Then, wave trains with a small value of & will
have larger distances between consecutive peaks than wave trains
with a higher value of 4.

The first wave train to emerge from the Hopf bifurcation
is the one with # = 0, corresponding to homogeneous PO
(47, 55). Even if PO are stable in the system without space,
a weakly nonlinear analysis of the solutions emerging from the
Hopf bifurcation (included in S7 Appendix, Text) shows that PO

are unstable under nonhomogeneous perturbations (blue dashed
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line in Fig. 2C). Wave trains with finite # values emerge from
S+ for larger values of @, at the marginal stability curve (MSC),
shown as a light blue line in Fig. 2D, and, as the homogeneous
PO, are all unstable once created. Wave trains within a certain
range of wavenumbers # stabilize for larger values of @ through
an Eckhaus instability (Eck). The Eck instability curve, shown in
brown in Fig. 2D, is the boundary between unstable (red-shaded
region) and stable (green-shaded region) wave trains. Therefore,
the shaded green area in Fig. 2D is the Busse balloon of coexisting
stable wave trains for each value of @ (2, 56). Our analysis also
shows that wave trains do not display transverse instabilities,
however, they can destabilize in other ways depending on their
wavenumber (2, 5, 57, 58) (see the stability analysis of wave trains
in SI Appendix, Text).

Wave trains with # — 0 can have two very different shapes:

almost homogeneous oscillations for values of @ close to the
Hopf, the limit cycle (PO) already discussed and represented as
dark blue curves in Figs. 2 B and C, or isolated traveling pulses
(TP), to be discussed in Section 2.3.3, for values of @ beyond the
T-point.
2.3.2. Defect turbulence. For values of @ where there are neither
stable wave trains nor stable homogeneous steady states, the sys-
tem exhibits defect turbulence (Fig. 1E) (47). Defect turbulence
refers to a dynamically disordered state in which the spatiotempo-
ral dynamics of a field is continually disrupted by the formation
and annihilation of localized defects in pairs. These defects are
points within the oscillatory field where, as one moves around
the defect, the phase of the oscillation completes a full 27 cycle.
Consequently, the phase becomes undefined at the core of the
defect and the oscillation amplitude drops to zero at that point.

This dynamical regime is generic for systems near but above
the oscillatory threshold, as described by the Complex Ginzburg—
Landau Equation (CGLE), which governs the amplitude of
oscillations near a Hopf instability. We have derived the CGLE
corresponding to Eq. 1 near the Hopf bifurcation and found
that, for the parameters used in this study, the system falls
squarely within the defect turbulence region of the CGLE phase
diagram (47) (the full derivation is available in SI Appendix,
Text). This rigorously confirms that the regime shown in Fig. 1E
corresponds to defect turbulence. Furthermore, this dynamical
regime is induced by the Eckhaus instability of wave trains, when
reducing the mortality (59).

Close to the Hopf bifurcation, where oscillation amplitudes
around the stable state S are small, identifying defects visually
can be challenging. In S Appendix, Text, we provide a simulation
in this parameter region that explicitly highlights the presence of
defects. At mortality rates further above the Hopf bifurcation,
where spatial oscillations have larger amplitudes, defects may be
observable in natural meadows as the tips of vegetation stripes
(such as those in Fig. 14). These defects persist in regions with
stable wave trains, as shown in Fig. 1 Cand G. Spirals like the ones
shown in Fig. 1 Band F are also the result of the dynamics driven
by the defect at their center. Defect turbulence might underlie
the formation of disordered patterns such as the one in Fig. 1A4.
A detailed analysis of defect formation and their number across
different dynamical regimes is presented in S/ Appendix, Text.
2.3.3. Traveling pulses. Traveling pulses (7P) are localized struc-
tures traveling on a homogeneous steady state. In our system,
we find traveling pulses on S_ (7P_) and traveling pulses on Sy
(TPy).

Traveling pulses on S_ (7P-) emerge from the point SL
(see the dotted purple line in Fig. 2 C and D) (60). A
representative profile of this structure is shown in the purple
Inset of Fig. 2C. These pulses are unstable, as they rest on the
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unstable homogeneous state S_ and their branch ends at a T-
point bifurcation for @ = 0.019 (60-63) (orange dot in Fig. 2
C and D). From this T-point, a branch of new stable pulses
on Sy (TPy) emerges (solid red curve in Fig. 2 B-D) (64). A
representative profile of this structure is shown in the red /nser of
Fig. 2C. In natural meadows, this structure is seen as an isolated
vegetation stripe. The ring shown in Fig. 1.D can be approximated
to this structure.

For values of @ above the T-point, pulse-shaped initial con-
ditions generate 7P pulses, which are stable in parameter space
until they are destroyed in a fold of pulses for wsy7p = 0.126
(red dot labeled SNTP in Fig. 2 C and D). Therefore, traveling
pulses are stable for values of w above the tipping point of the
homogeneous system, wgz, and even above wgy. Although in
this region, they coexist with wave trains with higher 4, traveling
pulses are the most resilient solution in the system, as shown
in Fig. 2D. Notice that the combination of negative feedback
mediated by toxins and positive feedback generates spatial struc-
tures that persist beyond the existence region of the homogeneous
state, thus increasing the resilience of the system. By continuously
moving, these structures partially evade the detrimental effects of
toxins, enabling their survival under harsher conditions.

Additional branches of pulses can be identified in the system,
including low-amplitude traveling pulses (dotted red curve in
Fig. 2C) and stationary pulses (light blue dotted curve in
Fig. 2C). However, these solutions are unstable and do not play
a significant role in the dynamics described in this paper. More
information about these solutions, along with their associated
bifurcations, such as the drift-pitchfork (DP) bifurcation and the
Maxwell point (MP), is provided in S/ Appendix, Text.

Similarly, wave trains with £ > 0 also end in a Fold of Wave
Trains. This fold is represented in Fig. 2D as an olive-green line.
The TPy, which corresponds to a wave train with # = 0, is the
last wave train to cross the fold, corresponding to the SN7P in
this case, and therefore is the last populated solution to vanish
for high mortality rates.

3. Ecological Transition in a Global Change
Scenario

The bifurcation diagrams shown in Fig. 2 allow one to understand
the natural sequence of dynamical regimes an ecosystem will
undergo by a slow sustained increase of the mortality rate, for
instance, due to climate change. In the case of P. oceanica it
is well documented that a sea temperature above 28 °C, an
increasingly frequent extreme event, significantly increases the
mortality rate of P. oceanica (65-67). This ecological transition
is further illustrated in Fig. 3.

Starting with a low value of w, below the Hopf bifurcation, a
stable homogeneous meadow is stable. Increasing the mortality
rate, this state becomes unstable to oscillations. As just above the
Hopfbifurcation, all plane wave solutions are unstable (red region
in Fig. 2D), the system jumps directly into a defect turbulence
state (Fig. 3 A and B). The turbulent state persists up to @ ~ 0,
although its average plant density decreases with the mortality
rate. From there on, more or less coinciding with the stabilization
of wave trains (edge of the green region in Fig. 2D), periodic
coherent structures in the form of spirals or wave trains emerge
out of the spatiotemporal disorder (Fig. 3C).

The first coherent structures observed are spirals close to the
tipping point in the homogeneous model, i.e. the SL. The spirals
appear first with a small radius (Fig. 3C), which grows as @
increases (Fig. 3D). This scenario is similar to what is observed
for spirals in the complex Ginzburg-Landau equation (58). The
stability of spirals is directly related to the stability of wave trains,
as their arms asymptotically tend to plain waves, but the core
provides them extra robustness. Typically, spirals can persist even
if their arms (plane waves) are asymptotically unstable because the
instability is convective, which determines the maximum radius
of the spiral before its outer part breaks down. The more unstable
the arms, the smaller the radius. For this reason, spirals are smaller
close to the turbulent regime, and become larger as wave train
solutions gain more stability (inside the green region).

1.00

0.0

I
—-0.05 0.00

Fig. 3. Mean plant density as a function of o from a spatially extended simulation with a gradual increase in mortality over time (black dots). The homogeneous
populated steady states S+ and bare soil Sy are shown as green and black lines, respectively. The mean plant density of the homogeneous periodic oscillation,
PO, is represented by a blue dashed line. The stationary and periodic homogeneous solutions correspond to those in Fig. 2B. Snapshots of the population density
corresponding to the orange points in the plot are shown in Insets A-F, illustrating distinct spatiotemporal patterns: turbulent regime (A-C), spiral formation
around defects (C and D), and plane-wave trains (E and F). Relevant bifurcation points are labeled as in Fig. 2C. Note how spatiotemporal patterns exhibit a
higher biomass density than the homogeneous periodic oscillations (black dots vs. blue dashed line) and persist beyond the tipping point of homogeneous
solutions, SL and SN, indicating enhanced resilience. A fast-forward simulation of the entire transition is available in Movie S1. Movies with detailed temporal
resolution of the dynamics in Insets (A-F) are provided in Movies S2-S7, respectively.
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We also observe how the wavelength of the spiral arms increases
with o, decreasing the average population density. The spirals
persist until @ ~ 0.075, where they are overrun by wave trains
nucleated from the interstices between the spirals (Fig. 3E),
close and approaching wgy. These wave trains initially have a
wavenumber larger than that of the spirals, but as @ increases
further, their wave number decreases again due to the destruction
of peaks.

In 1D systems, the destruction of peaks occurs when a plane
wave crosses the right Busse-Balloon border (right limit of the
green dashed region in Fig. 2D). Peak destruction is followed by a
reorganization of the remaining peaks, converging to a wave train
with a wavelength again inside the Busse Balloon (2, 5). This
process maintains the system in stable wave train states while
increasing  until the last traveling pulse decays at the SNTP
point. Similar mechanisms have been found in steady vegetation
patterns and wave trains in systems with advection (3, 5, 56).
The progressive destruction of peaks far beyond the tipping point
of the homogeneous system, increasing the wavelength of wave
trains in a 1D system is shown in S/ Appendix, Fig. S3.

In 2D systems, where vegetation stripes are finite, a shrinking
of the stripes from their tips is observed for large mortality values.
This is the principal peak destruction mechanism observed in
the simulation shown in Fig. 3 (Movie S§7). This transition
occurs for mortality values close but below wgy7p. No transverse
destabilizing effects have been observed in this model, as the wave
trains are stable in the transverse direction (see stability analysis
of wave trains in ST Appendix, Text).

Traveling pulses, forming an isolated traveling stripe, are the
ultimate resilient structures before extinction at wsy7p.

4. Discussion and Conclusions

We have proposed a simple model that, by including positive
feedback and negative feedback mediated by toxins with a time
scale similar to the characteristic population dynamics, is able to
reproduce a variety of spatiotemporal dynamical regimes observed
in different ecological contexts and the regime shifts among them.
Without the toxin mediation, the system can show a strong Allee
effectand the existence of the populated solution ends at a tipping
point when increasing the natural mortality. By also considering
noninstantaneous dynamics in the negative feedback, the system
can exhibit excitable behavior, where initial homogeneous plant
populations grow driven by a strong Allee effect, but eventually
decay and die due to the toxin accumulation. In this case,
the ecological tipping point occurs for mortalities below this
excitable regime. However, in spatially extended systems, self-
organized moving structures like wave trains and traveling pulses
can persist even at mortality levels beyond the tipping point for
homogeneous populations. The low toxin concentration at the
leading edge of moving spatial structures enables plant growth
through positive feedback. Behind these structures, however,
toxins accumulate, causing a decline in population density. This
self-organizing dynamic allows positive feedback to outweigh the
negative impact of toxins in certain regions, thereby enhancing
the system’s resilience. These resilient traveling structures contrast
with previous studies, where resilience was attributed to steady
states (68) or steady spatial patterns (1, 2).

We performed a long simulation with a gradual increase in
mortality in a 2D system and observed a progressive transition
from homogeneous meadows to extinction going through tur-
bulent regimes, spirals, wave trains, and traveling pulses in this
precise order. This scenario is compatible with aerial images of
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P. oceanica meadows (Fig. 1 A-D), where there is theoretical
and empirical evidence of positive and negative feedback, and
of the role of plant—soil interactions in the formation of rings
(6, 7, 33). According to our results, the mortality rates of the
meadow in each area could be inferred from the aerial images.
However, this inference assumes that the underlying parameters,
including a and 7, remain consistent across the regions analyzed.
However, the sequence of dynamical regimes observed when
increasing @ is robust to parameter variations, as shown by
the phase diagram in the parameter space (®, @) (SI Appendix,
Fig. S8).

The mean biomass density of spatiotemporal solutions is
greater than that of homogeneous systems for the same mortality
rate. Furthermore, these spatiotemporal solutions extend and
survive far beyond the tipping points of the homogeneous
vegetation cover.

In this article, we highlight the role of positive feedback in
the formation of spatiotemporal structures in vegetation systems.
The excitable medium that the ecosystem forms is related to local
type-I excitability and the presence of a T-point (60, 63, 64). The
bifurcations responsible for creating and stabilizing the excitable
pulses, the SL and the T-point respectively, need a bistable
regime and oscillations in the local (homogeneous) model, only
possible if the model presents positive feedback. Similarly, other
systems with positive feedback in addition to mediated negative
feedback also show excitable regimes (7-9, 39, 40, 42, 43, 45).1
Nevertheless, the role of positive feedback in the formation of
these regimes is not discussed in these studies.

Models that do not include positive feedback show a very
different pulse-like solution (10, 38, 41, 44). These pulse-like
solutions are fronts of a stable populated solution propagating on
the (unstable) bare soil state. These fronts exist only in parameter
regions where the populated solution is stable and therefore do
not give any spatiotemporal-induced resilience to the system.
Furthermore, the system cannot be re-excited after one of these
fronts has passed. Therefore, models without positive feedback
cannot reproduce the formation of wave trains, spiral patterns,
or empty rings.

Inhomogeneities and heterogeneous conditions can influence
self-organization processes in vegetation systems (69) and can
enhance resilience in large ecosystems (2). In excitable media,
heterogeneous conditions can promote the formation of spirals
and target patterns (70) or even induce a transition to a
different dynamical regime (71). Studies applying heterogeneous
backgrounds to plant-toxin models show deformations in the
rings and the spontaneous generation of new vegetation patches,
aligning more closely with observations in the real world (7).
Furthermore, real P. oceanica meadows are typically geographi-
cally confined to regions with suitable environmental conditions.
In practice, traveling structures that do not self-replicate and
move in a single direction (e.g., wave trains and traveling pulses
or expanding rings) will eventually reach the boundaries of
the habitat and decay. These structures can thus be considered
resilient but transient structures (72).

Finally, several experimental approaches could be used to test
the hypotheses outlined in this paper. For example, adding iron to
the rear of existing traveling pulses to inhibit the negative effects
of sulfides (34, 36, 37) would stop plant recession widening
the pulse. In addition, measuring growth and mortality rates
at different locations of complex patterns would validate the
mechanisms described in this work. This has been done partially

Tin refs. 39, 40, and 43 the positive feedback is not introduced explicitly, but through
nonlinearities in water consumption.
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with traveling pulses (7), but not in more complicated structures
such as spirals and turbulence. Finally, for restoration efforts in
regions with known traveling structures, it would be advisable to
consider the dynamics described in this work to decide where to
transplant new shoots.

5. Materials and Methods

Spatiotemporal simulations were performed using the Julia package Fourier-
Flows (73). We used a Pseudospectral Runge-Kutta 4 method with a complete
time step dt = 0.05 (74). The simulations shown in Fig. 1 £ and G, and
in Fig. 3 were carried out on a grid with 2,048 x 2,048 grid points and a
lateral size [y = L, = 500. The simulation in Fig. 1F was performed on
a 1,200 x 1,200 grid with lateral size Ly = L, = 300. The simulation in
Fig. TH was run on a 1,024 x 1,024 grid with lateral size [y = L, = 250.
The simulations shown in Fig. 1 £ and G, and in Fig. 3 were initialized near the
state S, with mortality increased in steps of Aw = 0.0016 every At = 200.
To prevent possible metastable structures, uncorrelated spatial Gaussian noise
with a variance of 6 = 0.004 was added to both the plant and toxin densities
after each parameter change. The simulation shown in Fig. 1F was initialized
with a radial Gaussian distribution of plants and toxins with amplitude A = 0.7
and variance ¢ = 17.5. These two initial distributions were displaced in space
by Ar = 2.8 to break the radial symmetry. The simulation shown in Fig. 1H is
initialized with a radial Gaussian distribution of plants and toxins with amplitude
A = 0.2 and variance ¢ = 25.
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