

Not just carbon: biodiversity credits for restoration of the marine animal forests

Dor Shefy, Sergio Rossi & Baruch Rinkevich

To cite this article: Dor Shefy, Sergio Rossi & Baruch Rinkevich (2025) Not just carbon: biodiversity credits for restoration of the marine animal forests, *Ecosystems and People*, 21:1, 2488350, DOI: [10.1080/26395916.2025.2488350](https://doi.org/10.1080/26395916.2025.2488350)

To link to this article: <https://doi.org/10.1080/26395916.2025.2488350>

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 25 Apr 2025.

Submit your article to this journal

Article views: 538

View related articles

View Crossmark data

Not just carbon: biodiversity credits for restoration of the marine animal forests

Dor Shefy^{a,b}, Sergio Rossi^{b,c,d} and Baruch Rinkevich^a

^aIsrael Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel; ^bUnderwater Gardens International, Unity of Marine Biology, Barcelona, Spain; ^cDepartment of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy; ^dInstitute of Marine Sciences (LABOMAR), Federal University of Ceará, Fortaleza, Brazil

ABSTRACT

The ecosystems known as Marine Animal Forests (MAFs), predominantly inhabited by sessile invertebrates, represent critical biodiversity hotspots under imminent threats from human activities and climate change. This perspective evaluates the concept of biodiversity for MAFs restoration by incentivizing MAF restoration projects, and harnessing the advantages of biodiversity credits under the notion of 'biodiversity-carbon credits' for the MAFs, further aligning with global biodiversity objectives. Beyond addressing a significant restoration gap, our approach harmonizes with international initiatives, encouraging additional classes of stakeholders to join restoration efforts. Illuminating these often-neglected ecosystems, our proposed approach seeks to implant proactive measures for the restoration and conservation of the global MAFs, contributing to a sustainable future in which ecosystem functioning is re-established. By elevating biodiversity and carbon immobilization, our approach not only augments ecological services but also fortifies the resilience of these vital marine habitats.

ARTICLE HISTORY

Received 22 April 2024
Accepted 25 March 2025

EDITED BY

Evangelia (Valia) Drakou

KEYWORDS

Biodiversity credits; carbon credits; marine animal forests; restoration; blue finance

Background

Human activities, particularly the release of greenhouse gases (GHG) and alterations in land use (for instance, the global decline of forests due to conversion for agriculture, urbanization, or mining), are primary drivers for climate change (Brierley and Kingsford 2009; Calvin et al. 2023), profoundly impacting biodiversity across terrestrial, aquatic, and marine ecosystems (Calvin et al. 2023). Specifically, within marine ecosystems, these human activities disrupt biodiversity by influencing species distribution and abundance, altering connectivity trajectories, functionality and impacting essential processes, leading to biodiversity decline (Blowes et al. 2019; Duarte et al. 2020). Additionally, biodiversity loss has a cascading effect, encompassing the degradation of ecosystem services, disrupting the balance equilibrium and functioning of ecosystems (Bindoff et al. 2019), thereby carrying far-reaching implications for ecosystems and the well-being of human societies (Worm et al. 2006).

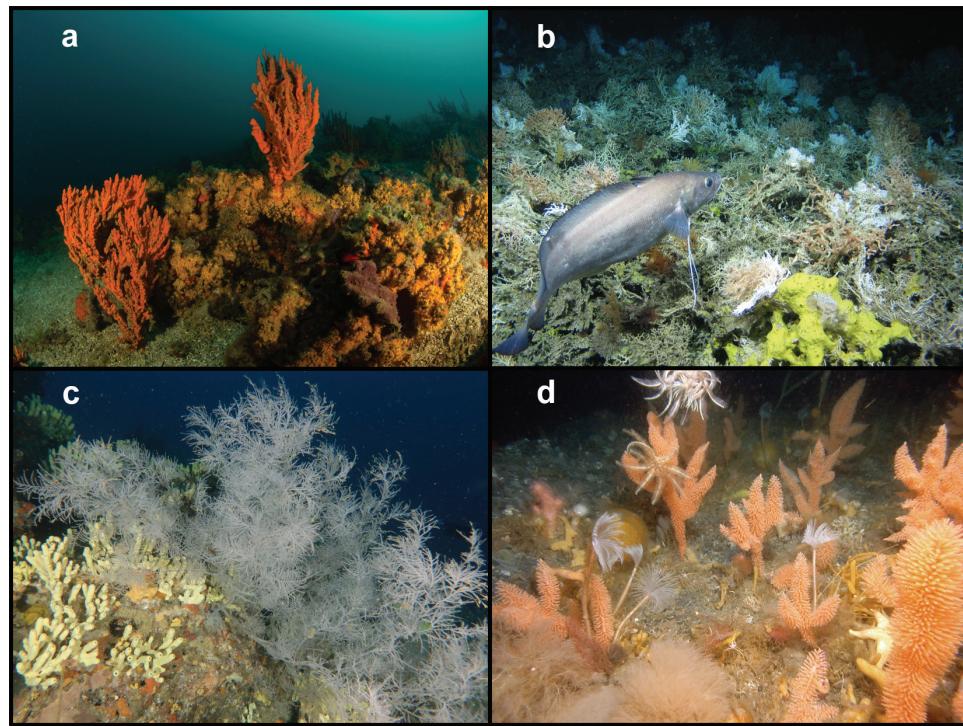
Efforts to address climate change and human-induced impacts have predominantly focused on land-based ecosystems and mitigating carbon emissions (Roe et al. 2021; Drost et al. 2022). These approaches further encompass initiatives such as carbon credits (CC), biodiversity offsetting (BO) (BBOP 2013; World Economic Forum 2022), biodiversity credits (BCD) (Porras and

Steele 2020; World Economic Forum 2022; Ducros and Steele 2022) and blue carbon credits (BLC) that primarily referred to marine photosynthesizing ecosystems like mangroves, kelps and sea grasses (Table 1). CCs operate on the well-defined principle that carbon emissions can be offset by supporting emission-reducing acts such as reforestation, where each CC unit corresponds to one ton of emitted CO₂ (Fawzy et al. 2020). In contrast, the concepts of BO and BCD are ambiguous (Vaussière et al. 2017; Maron et al. 2018; Simon and Dorothée Herr 2023). Both represent a quantified measure of biodiversity that can be traded in the market to address issues like biodiversity decline and habitat loss due to development projects and agriculture (BBOP 2012a). Yet, clear standards defining what constitutes a biodiversity unit are currently lacking (BBOP 2012b; Chiavacci and Pindilli 2018).

The Marine Animal Forests (MAFs) stand out as biodiversity-rich habitats, representing ecosystems that are profoundly impacted by anthropogenic activities and climate change (Rossi 2013; Rossi et al. 2022). The MAFs are marine ecosystems dominated by sessile invertebrates that form intricate 3-dimensional structures and are further classified as ecosystem engineers. These structures form a complex network of ecological niches, functioning as habitats, refuges, food suppliers and nursery-beds for a wide range of species (Jones et al. 1994; Rossi et al. 2017;

Table 1. Definitions for the terms 'carbon' and 'biodiversity' used in this manuscript in conjunction with the concepts of 'mitigation', 'offset' and 'credit'.

Name	Definition	Source
Carbon immobilization	A short-term temporary retention of carbon in the biomass of an organism.	Barnes (2018)
Carbon sequestration	Immobilized carbon that remains in the organism's biomass or ecosystem a long period of time.	Lal (2004)
Carbon credit	A tradable permit that represents the right to emit a certain amount of carbon dioxide or other greenhouse gases. One credit is equal to 1 ton of CO ₂ .	Fawzy et al. (2020); Roe et al. (2021)
Carbon offsetting	Activities that reduce or remove GHG emissions from the atmosphere, like reforestation and carbon capture.	Galik and Jackson (2009)
Blue Carbon	Carbon stored in coastal and marine ecosystems such as mangroves, seagrasses, and tidal marshes, which play a significant role in capturing and storing CO ₂ from the atmosphere	Macreadie et al. (2021)
Habitat	Specific area or environment where a particular species or community lives and is characterized by its physical or biological features (coral reef, for example)	Hall et al. (1997)
Ecosystem	A dynamic complex of plant, animal and microorganism communities that interact with the abiotic components as a functional unit	Allee et al. (2000); Loreau (2010)
Biodiversity offsetting	'A conservation approach designated to compensate for significant residual adverse biodiversity impacts arising from project development after appropriate prevention and mitigation measures have been taken'.	BBOP (2012)
No-net-loss/Net gain	A conservation strategy aims to balance or compensate for the ecological losses caused by development through equivalent (no net loss) or greater gains (net gain) in biodiversity elsewhere.	BBOP (2012); BBOP (2013)
Biodiversity credit	'Biodiversity credits are an economic instrument that can be used to finance actions that result in measurable positive outcomes for biodiversity through the creation and sale of biodiversity units'.	Porras and Steele (2020)
Co-crediting	'Biodiversity incorporated into carbon crediting schemes. Traditionally performed for terrestrial biomes'.	Tedersoo et al. (2023)
Stacking ecosystem service credits	"Refers to multiple credits generated from one piece of land being sold separately in the relevant markets."	Torabi and Bekessy (2015)
Bundling credits	"Bundling credits refers to selling multiple ecosystem services from one piece of land as a combined ecosystem credit".	Torabi and Bekessy (2015)
Biodiversity-carbon credit	Biodiversity credits and carbon credits are integrated to one unified credit unit – designated for the Marine animal forests.	This manuscript


Orejas et al. 2022; Shmuel et al. 2022). The ecosystems that encompass MAFs are shaped by various ecological engineers, including sedentary sponges, ascidians, bryozoans, polychaetes, bivalves and cnidarians (Rossi et al. 2017; Orejas et al. 2022) (Figure 1). MAFs are geographically widespread, spanning from tropical to polar regions, covering warm, temperate and cold-water habitats, from shallow coastal areas to deep-sea zones (Rossi et al. 2017). Thus, the MAFs provide a range of ecological services crucial for the livelihoods of millions of people globally (Paoli et al. 2017; Bindoff et al. 2019). Not all MAFs offer identical ecological services or provide equal benefits, and numerous services remain challenging to quantify (Rinkevich 2015b; Paoli et al. 2017). Due to their rich species diversity, intricate structural complexity and canopy structures formed by engineering species, MAFs emerge as biodiversity hotspots. Further, they play a significant role in ecosystem support and regulation (Paoli et al. 2017; Orejas et al. 2022), as well as in carbon immobilization (Fodrie et al. 2017; Coppari et al. 2019; Rossi and Rizzo 2020), while some (such as the tropical coral reefs) are further considered as carbon sequestrating MAFs facilitated by their foundational species (Ware et al. 1991; Rinkevich 2024).

As outlined, MAFs hold substantial potential for biodiversity enhancement and carbon immobilization

(that is not yet linked with any trading properties, such as credits), and in certain MAFs (such as the coral reefs), there is also potential for carbon sequestration (Ware et al. 1991; Rinkevich 2024) (the flux of carbon that is partially retained in the system; Table 1). Drawing inspiration from mitigating approaches applied in terrestrial ecosystems, we present here an alternative perspective for the conservation and restoration of marine environments to address global and local biodiversity loss while mitigating anthropogenic impacts. Our proposal advocates for the integration of biodiversity and carbon credit concepts and mechanisms to incentivize restoration projects focused on MAFs, harnessing the advantages of both approaches. This perspective article outlines how the potential use of biodiversity credits aligns with international goals, illustrating its capacity to strengthen MAF restoration approaches while addressing climate change impacts and promoting biodiversity recovery.

What are carbon, biodiversity, and offsetting credits?

In response to global climate concerns, the 1997 Kyoto Protocol has aimed to collectively tackle climate change caused by GHG emissions. The protocol

Figure 1. Different MAFs habitats. a: Poriferan and Cnidarian dominated MAFs; (credit: Thanos Dalianis). b: A greater forkbeard (*phycis blennoides*) in a cold-water coral reef Logachev coral carbonate mound province (rockall bank, NE Atlantic; credit: J Murray Roberts).c: The engineering MAF species is *Antipathella subpinnata* (black coral) in the Ligurian Sea (Mediterranean Sea) (credit: Lorenzo Bramanti). d: A gorgonian MAF in Antarctica (credit: Julian Gutt).

introduced tradable CCs as financial and regulatory instruments for reducing GHG emissions, allowing for international trading (Fawzy et al. 2020). Individuals, organizations, and companies have the option to purchase CCs as a means to offset their carbon footprint and support climate mitigation initiatives (Table 1). Subsequently, industries may offset or reduce a portion or the entirety of their carbon footprint by adopting greener technology, engaging in CCs trading with other companies or purchasing CCs from CO₂ sequestration initiatives projects such as reforestation (Fawzy et al. 2020; Roe et al. 2021). In the marine context, CCs deliverables are termed 'blue carbon' (BLC), referring to the carbon stored or absorbed in photosynthesizing marine organisms or sediments (Table 1), usually linked to salt marshes, mangroves and seagrasses (Macreadie et al. 2021).

Carbon-focused projects like land reforestation or BLC, might prioritize carbon sequestration by planting fast-growing monoculture species (Lee et al. 2019; Di Sacco et al. 2021), unintentionally neglecting biodiversity conservation. This narrow focus on carbon can lead not only to a dwindled genetic diversity in the restored area but also to reduced resilience against pests and diseases within these ecosystems, potentially resulting in an overall decline in ecosystem services (Liu et al. 2018). In the context of BLC projects, the synergistic effects of submerged coastal environments may also be lost in the pursuit of carbon sequestration objectives (Lee et al. 2019).

Although the concept of BO lacks precision (Vaissière et al. 2017; Maron et al. 2018), it remains a widely embraced conservation strategy. Similar to CC, it seeks to balance the negative impacts and adverse effects of development projects by generating biodiversity-related gains elsewhere. This approach involves quantifying and converting differences in biodiversity characteristics between impacted and offset sites into biodiversity credits that can be traded or regulated in markets (Table 1). Currently, these credits represent the only means for investors and banks to monetize offsets, though the practice has been shown to be controversial. These BO credits can express ratios or an absolute value of species count, ecological services quantification and qualification, area or abiotic parameters (such as terrain, streams, soil etc.) (Gonçalves et al. 2015) and may be referred to as conservation credits, ecosystem credits, species credits, or biodiversity credits, depending on the specific country or program (Chiavacci and Pindilli 2018). The primary objective of this approach is to achieve a state of 'no net loss', preferably a 'net gain' of biodiversity (Table 1) (Moilanen et al. 2009; Business and Biodiversity Offsets Programme BBOP 2012). Biodiversity equivalence has a pivotal role in this process, requiring that the ecological value of the offset site is comparable to that of the impacted site (BBOP 2012a). Biodiversity credits also function as a financial instrument for enhancing biodiversity, independently from environmental regulations,

promoting biodiversity enhancement (Table 1) (Porras and Steele 2020; World Economic Forum 2022; Tedersoo et al. 2023). Each credit signifies a positive change in biodiversity attributes and represents either a unit of area, number of species, abundance or other biodiversity indices (separately or together) (Tedersoo et al. 2023). This mechanism acts as an incentive for landowners or non-governmental organizations (NGOs) to engage in actions promoting biodiversity through nature-based solutions such as habitat restoration or conservation (Birrer et al. 2014; World Economic Forum 2022; Ducros and Steele 2022; Simon and Dorothée Herr 2023). While biodiversity credits initiatives have garnered traction, particularly on terrestrial habitats, there is a noticeable lack of initiatives targeting the MAFs despite the ongoing loss of biodiversity due to human activities such as the fishing industry or deep sea mining, for example. This gap in attention to the MAFs within the biodiversity credits landscape highlights a critical oversight, warranting increased consideration and emphasis, especially in the context of biodiversity loss.

Despite its potential benefits, the term of BO faces several fundamental challenges. Firstly, the intricate and challenging nature of biodiversity assessment makes its quantification complex, introducing difficulties in ensuring complete equivalence or achieving a state of ‘no-net-loss’ between impacted and offset areas (BBOP 2013; Maron et al. 2016, 2018). Secondly, the matrices associated with biodiversity credits or biodiversity offsetting, whether addressing equivalency, ecological impact, or biodiversity gain, often lack transparency (BBOP 2012b; Maron et al. 2016; Lindenmayer et al. 2017). Thirdly, many biodiversity credit projects tend to focus on issues such as the loss of area, habitat quality in the loss area, ratios of assumed theoretical ecological services or the number of species and/or specimens that are lost, neglecting the organisms’ functional roles in habitat maintenance (Gonçalves et al. 2015; Droste et al. 2022). As the above biodiversity issues are rarely considered together, the success of current offset projects depends on other inclusive elements such as comparable measures, access to reliable data, and effective monitoring and enforcement (BBOP 2012b; Gonçalves et al. 2015). Yet, none of the above approaches is universally agreed upon, and, particularly for ecosystem-engineered habitats in the oceans, it is often lacking, including the evaluation of the biodiversity of coral reefs, kelp forests and seagrasses.

Acknowledging the constraints of focusing solely on carbon sequestration and storage, there has been growing awareness in recent years of the crucial role that biodiversity plays in augmenting habitat maintenance, improving ecological functions, and in supporting ecosystem services (Tilman et al. 2014; Liu

et al. 2018, 2018; Lee et al. 2019; Hua et al. 2022; Andres et al. 2023). The recognition that biodiversity contributes to the survival and functionality of organisms has led to the emerging concept that stakeholders can enhance their economic incentives beyond carbon credits by incorporating biodiversity considerations into their practices (Torabi and Bekessy 2015; Bryan et al. 2016; Tedersoo et al. 2023; Kangas and Ollikainen 2023). In forestation, this approach may increase the potential for carbon sequestration, even when utilizing species with lower carbon sequestration capabilities. Additionally, it can prolong the temporal effectiveness of carbon storage (and carbon immobilization) while providing supplementary ecological services through the maintenance of biodiversity (Poorter et al. 2015; Huang et al. 2018; Feng et al. 2022). Although the combination of carbon and biodiversity credits is gaining traction in domains like silviculture (‘co-crediting’, “stacking credits; Table 1) and blue carbon (Bryan et al. 2016; Tedersoo et al. 2023), this integrated approach is notably absent also in the context of MAFs. Given the profound global and local significance of MAFs for biodiversity, along with their impact on ecological functions that influence ecosystem services, we argue that the incorporation of biodiversity (and in some cases, carbon immobilization or sequestering) for the MAFs is imperative to create an incentive for effective restoration, ultimately facilitating climate change mitigation and decelerating the pace of biodiversity loss.

Intergovernmental marine biodiversity goals

Acknowledging the pressing global environmental and sustainability challenges, the United Nations (UN) has designated the third decade of the 21st century as the ‘Decade on Ecosystem Restoration’. This initiative underscores a collective global effort to restore ecosystems, aiming for up to 30% of coastal and offshore areas (United Nations 2019). It underscores the central roles of ecosystem resilience and adaptation in addressing climate change by storing carbon and safeguarding biodiversity.

The declaration of the Decade on Ecosystem Restoration was subsequently complemented by the targets outlined in COP15 CBD UN (2022) and by the recent discussions in COP16 (Convention on Biological Diversity 2024a, 2024b). Noteworthy among these targets are those directed explicitly at marine restoration, including the objective to ensure that by the year 2030, at least 30% of degraded areas will undergo effective restoration (Target 2). This is in sharp contrast to the current state where only 8% of the ocean is under some form of protection, and less than 3% is fully or highly protected (Valençá et al. 2024). Additionally, there is an emphasis on

the necessity to mitigate the impacts of climate change on biodiversity by employing nature-based solutions, that include active restoration (Target 8). Furthermore, COP15 adopted the Kunming-Montreal Global Biodiversity Framework, which recognizes the need to augment international, public, and private funding for restoration (Target 19). It also emphasizes the importance of transparency and accountability in executing these actions (Section J; CBD UN 2022).

Coastal and marine conservation initiatives require substantial financial resources, which are often dictated by political decisions. These resources are frequently limited and overshadowed by competing priorities, as oceans typically rank low on the political agenda. In contrast to past situations, the UN and international bodies, such as the EU, have emphasized the importance of supporting marine biodiversity projects (United Nations 2019; European Commission 2020). They advocated for collaborations among governments, international organizations, and the private sector to finance and implement marine conservation and mitigation initiatives, acknowledging that it is impractical to depend solely on formal funding from governmental institutions. The UN biodiversity strategies for 2030 further highlight the critical role of funding marine biodiversity projects in achieving conservation and mitigating targets (United Nations 2015, 2019; European Commission 2020; Convention on Biological Diversity 2024c). To address funding challenges, the UN and the EU have also stressed the need for innovative financing mechanisms to support nature-based solutions for marine biodiversity projects. By leveraging public-private partnerships, these organizations, and others (BNP Paribas 2023; Convention on Biological Diversity 2024c), aim to mobilize additional resources and effectively overcome financial barriers, ultimately contributing to protecting and restoring marine biodiversity.

Biodiversity credits for the MAF

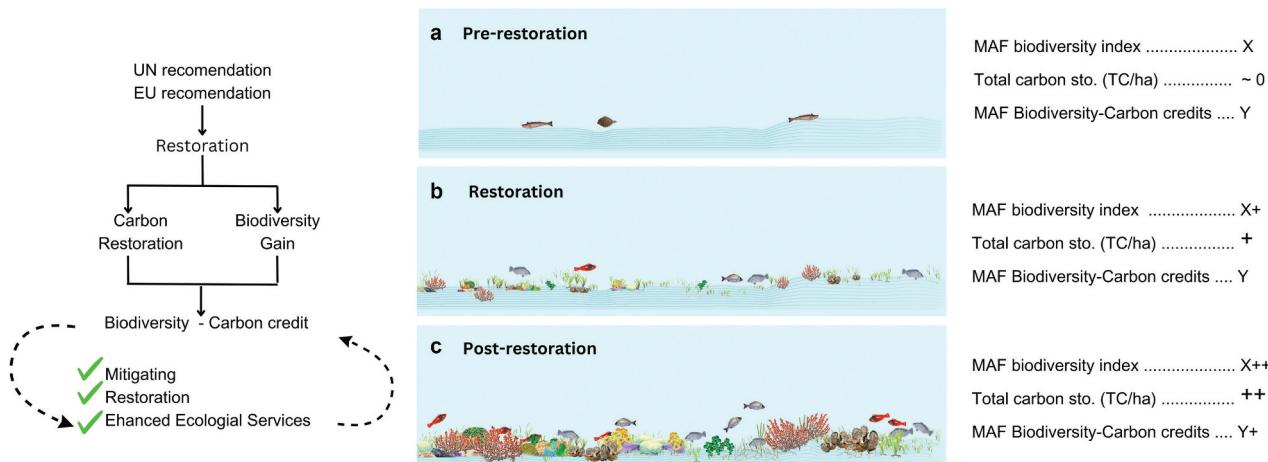
Biodiversity is the variety of life and its processes. It includes the variety of living organisms, the genetic differences among them, the communities and ecosystem in which they occur, and the ecological and evolutionary processes that keep them functioning, yet ever changing and adapting. (Noss and Cooperrider 1994)

In the given context of the above provided definition, the biodiversity within MAFs plays a crucial role in their ability to endure and adapt to environmental changes, (Rossi 2013; Nash et al. 2016; Drury and Lirman 2017; Brandl et al. 2019; Topor et al. 2019; Benkwitt et al. 2020) and can potentially help mitigate

the impacts of human activities and global changes. Analogous to terrestrial forests, species that act as ecosystem engineers within MAFs habitats contribute to the complexity of these ecosystems, creating a multitude of ecological niches that influence the behavior of other organisms and foster the establishment of habitats with a high level of species richness and functions (Jones et al. 1994; Graham and Nash 2013; Horoszowski-Fridman et al. 2015; Shmuel et al. 2022). In non-disturbed MAF ecosystems, interactions among MAF dwelling species, coupled with the interplay between biotic and abiotic parameters, intraspecific genetic diversity, successful reproduction and recruitment, weave a complex network of species interactions and trophic relationships within MAFs, enhancing habitat stability and resilience (Altieri et al. 2007; Rossi et al. 2017; Gribben et al. 2019; Benkwitt et al. 2020). This is highlighted at various biodiversity levels. High intraspecific diversity enhances resilience to disturbances by broadening the range of responses within populations under different environmental conditions (Hughes and Stachowicz 2004; Reusch et al. 2005; Meyer et al. 2009; Baums et al. 2013; Brown et al. 2022). Higher species diversity increases the likelihood that some species can compensate for the loss of others, helping maintain ecosystem functions and productivity (Nash et al. 2016; Noss 1990; Nyström 2006). Species-rich communities are often more resilient, more efficient in resource use, and better at recovering from disturbances due to genetic diversity and functional redundancy, which ensures ecosystem stability (Hooper et al. 2005; Nyström 2006; Emmett Duffy 2009). This biodiversity-driven resilience supports the MAFs' capacity to adapt to changes in environmental conditions, safeguarding these vital ecosystems and contributing to carbon immobilization and other ecological services (Worm et al. 2006; Tilman et al. 2014; Emmett Duffy et al. 2017; Huffmyer et al. 2023). Yet, this biodiversity-driven resilience is not absolute, as MAFs are increasingly subjected to intense direct human activities (e.g. bottom trawling, mining) and climate change, which can exceed their natural adaptive capacity. In terrestrial ecosystems, the hypothesis that high levels of carbon storage and sequestration are positively correlated with biodiversity (Schuldt et al. 2023) and that increased biodiversity, in turn, enhances carbon storage and sequestration (Poorter et al. 2015; Liu et al. 2018; Huang et al. 2018; Feng et al. 2022) remains a topic of ongoing discussions. Although the causal relationship is not fully understood, the link between carbon storage/sequestration and biodiversity is evident (Poorter et al. 2015). This relationship is even more intricate in the case of MAFs, since the two are deeply interconnected (Rossi et al. 2012, 2017). It is important to recognize that while MAFs as a whole

ecosystem have the potential to contribute to carbon sequestration, their role remains uncertain, though they are considered relevant elements in broader blue carbon discussions (Ware et al. 1991; Shi et al. 2021; Rinkevich 2024; James et al. 2024).

Despite the crucial role MAFs play in global biodiversity and their extensive ecological services, restoration efforts of these ecosystems (apart from tropical coral reefs) remain noticeably insufficient. This deficiency is attributed to knowledge gaps regarding the ecology and biology of these habitats and their organisms, the lack of financial support, and inadequate public awareness (Duarte et al. 2008). The integration of biodiversity and carbon credits in MAFs restoration presents a potential solution to address this gap. Shifting the focus from carbon sequestering to the concept of MAF biodiversity (including, but not necessitating carbon immobilization) may create tradeable units that can be exchanged in a relevant market. Each such unit comprises essential values (Table 1; Figure 2):


- (1) Biodiversity value: this quantifies the habitat quality within the context of biodiversity definition by Noss and Cooperrider (1994). It will be determined by biodiversity indices and matrices. This would also include the augmentation of the associated MAF biomass, such as fishes, echinoderms, mollusks, crustaceans, etc.
- (2) Carbon immobilization potential gain: This assesses the habitat's capacity for carbon

immobilization (in some MAFs, like the coral reefs, towards carbon sequestration, Perry et al. 2012; Coppari et al. 2019) akin to the calculations involved in carbon credits. It should also consider the carbon stored in the biomass of associated fauna, including both vertebrates and invertebrates, particularly in long-lived species.

- (3) Fisheries value: This measures the increase in the edible MAF biomass (fish, echinoderms, mollusks, and crustaceans), which has economic value. The abundance of these species is linked to the complexity and longevity of the MAFs.

We also acknowledge that not all MAFs can generate blue carbon at the level of traditional blue carbon ecosystems (e.g. seagrasses) or that some MAFs may not qualify for carbon credits at all. Yet, this does not conflict with the integration of carbon and biodiversity credits in MAFs restoration acts, as it is not a zero-sum situation. If carbon is neither stored nor sequestered, carbon credits will not be created, and incentives will come solely from biodiversity credits.

The core idea behind using biodiversity-carbon credits in MAF restoration is grounded in the premise that restoration efforts (including introducing artificial structures to degraded or non-functional habitats) can have a significant impact on carbon immobilization and species biodiversity. Even the simple act of transplanting habitat-forming species (beyond tropical scleractinians or bivalves) can

Figure 2. Illustration outlining the integrated Biodiversity-Carbon credits concept for the MAF. Left panel- International, national and domestic initiatives developed in accordance with the processes outlined in steps a-c within the middle panel. Aligned with the UN and EU recommendations for global change mitigation, enhanced biodiversity and augmented carbon sequestration are co-joined through habitat restoration (a and b in the middle panel), to create novel perpetuating financial instrument (c in the middle panel). The chosen MAF site for restoration activities (a in the middle panel) represents dwindling biodiversity values and neglected (almost zero) carbon stocks (right panel), hence, making it uncreditable. The letters for X and Y (right panel) are placeholders representing theoretical values for a 'MAF biodiversity index' and the 'MAF biodiversity-carbon credits', respectively. 'Total carbon sto. (Tc/ha)' represents the value of carbon stored per hectare. MAF biodiversity-carbon credits is the combination of the total carbon stored (Tc/ha) with MAF biodiversity index. The post-restoration site (c), sustained through augmented biodiversity, assists in mitigating human impacts, and offers additional ecological services. This, in turn, can lead to an increase in the issuance of biodiversity-carbon credits and economic benefits for a sustained habitat (including fishing and tourism activities). The plus signs (+) represent a theoretical value (of the respective index) that was added to the index due to restoration effort or post-restoration state.

initiate carbon immobilization in areas where it was previously lacking. This also enhances ecological niches, promoting the recruitment of diverse organisms with unique functions that would not have otherwise existed. With effective planning, monitoring, and the cascading benefits of habitat restoration, ecosystems can maintain resilience, leading to increased biodiversity and, in turn, elevated carbon immobilization and storage (Figure 2). Therefore, using biodiversity-carbon credits in MAFs restoration may add to the suggested priorities and strategies for these ecosystems, as suggested for coral reefs (Kleypas et al. 2021; Vardi et al. 2021). As an example, (Rinkevich 2024) proposed the use of the easily deployed floating reefs modules (each 10 × 10 m, holding up to 10⁴ coral colonies), which grow more quickly due to favorable conditions. Scaling this approach to cover an area of 1 km² could enhance biodiversity, create opportunities for generating biodiversity credits, and also sequester carbon, enabling the generation of carbon credits.

The biodiversity-carbon connections are shaped by factors such as the complexity of the ecosystem engineers, their age and the ways they can allocate carbon in their structures (and for how long) (Rossi et al. 2012). Any emerged biodiversity-carbon credit system will be based on complex indices rather than being overly reliant on species richness alone. It should encompass ecological attributes such as intraspecific genetic diversity, functional diversity and relative abundance of species, so as their capacity to sequester and store carbon (Noss 1990). Assuming that the restored MAFs of the future will not fully replicate the richness and biodiversity of past MAFs sensu (Rinkevich 2015a), the biodiversity credits generated will not be compared to pristine statuses or historical conditions. It will quantify the biodiversity scores added to a restored MAF, along with the supply of essential ecological services.

Biodiversity credits for MAF restoration allow businesses and individuals to achieve a 'net gain' in ecosystem restoration. By merging carbon capture with biodiversity goals, this approach encourages NGOs, private land (sea) owners, and investors to engage in initiatives that offer mutual environmental benefits (Kangas and Ollikainen 2023).

Conclusions

MAFs serve as crucial biodiversity hotspots profoundly impacted by human activities and climate change. Despite their vital contribution to global ecological services, current conservation and restoration efforts predominantly focus on terrestrial ecosystems, often overlooking the importance of MAFs.

Our proposed integration of biodiversity and carbon credits, where carbon sequestration and carbon

immobilization (where applicable) are effectively encompassed within the developing biodiversity index, offers a transformative approach to MAF restoration. This approach is not just a theoretical concept but a practical and urgent necessity as it seamlessly aligns with inter-governmental biodiversity goals, underscoring the importance of innovative financing mechanisms facilitated through public-private partnerships. It further responds to the urgent call for effective strategies to restore and protect marine ecosystems. This concept, which emphasizes both biodiversity and carbon immobilization, captures the manifold benefits that the MAFs offer (Figure 2). It is also highly flexible, accommodating the different types of MAFs. In MAFs where carbon is neither stored nor sequestered, carbon credits will not be generated, and the incentives will rely entirely on biodiversity credits. The implementation of the biodiversity-carbon credits reflects a comprehensive approach to carbon immobilization and biodiversity enhancement within the MAFs, contributing to broader conservation and restoration efforts and enhancing the overall ecological well-being of these unique marine environments. This concept, which emphasizes both biodiversity and carbon immobilization, further encourages a broad spectrum of stakeholders to engage in comprehensive restoration efforts, effectively addressing the challenges faced by MAFs and contributing to a more sustainable future.

Acknowledgement

We would like to thank Thanos Dalianis (HCMR), J Murray Roberts (University of Edinburgh; Changing Oceans Expedition 2012), Lorenzo Bramanti (CNRS), and Julian Gutt (AWI) for the permission to use the photos in Figure 1, and to Carlos Oliver (UGI) for the help with Figure 2. This study was supported by a post-doctoral grant to DS by Underwater Gardens International and by the sponsorship of the BNP Paribas Foundation. We want to thank to the Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy, the CA20102 MAF-WORLD COST Action Grant Holder, in which SR is also affiliated.

Author contributions

Dor Shefy Conceptualization, Writing – original draft, Writing – review & editing, Visualization.
Sergio Rossib Conceptualization, Writing – review & editing, Supervision, Project Administration, Funding Acquisition.
Baruch Rinkevicha Conceptualization, Writing – review & editing, Supervision, Funding Acquisition.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work was supported by the European Cooperation in Science and Technology [EC-COST MAF WORLD CA 21102] (SR and BR); Horizon Europe OCEAN CITIZEN project [no 101093910] Marine forest coastal restoration: an underwater gardening socio-ecological plan) (SR and BR); Israel Science Foundation (ISF) [3511/21](BR).

References

Allee RJ, Dethier M, Brown D, Deegan L, Ford RG, Hourigan TF, Maragos J, Schoch C, Sealey K, Twilley R, et al. 2000. Marine and estuarine ecosystem and habitat classification. NOAA-National Marine Fisheries Service. Silver Spring MD, USA; p. 1–37.

Altieri AH, Silliman BR, Bertness MD. 2007. Hierarchical organization via a facilitation cascade in intertidal cord-grass bed communities. *Am Naturalist*. 169(2):195–206. doi: [10.1086/510603](https://doi.org/10.1086/510603).

Andres SE, Standish RJ, Lieurance PE, Mills CH, Harper RJ, Butler DW, Adams VM, Lehmann C, Tetu SG, Cuneo P, et al. 2023. Defining biodiverse reforestation: why it matters for climate change mitigation and biodiversity. *Plants People Planet*. 5(1):27–38. doi: [10.1002/ppp3.10329](https://doi.org/10.1002/ppp3.10329).

Barnes DKA. 2018. Blue carbon on polar and subpolar seabeds. In: Agarwal RK, editor. *Carbon Capt Utilizat Sequestrat*. InTech.

Baums IB, Devlin-Durante MK, Polato NR, Xu D, Giri S, Altman NS, Ruiz D, Parkinson JE, Boulay JN. 2013. Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, acropora palmata. *Coral Reefs*. 32:703–717. doi: [10.1007/s00338-013-1012-6](https://doi.org/10.1007/s00338-013-1012-6).

[BBOP] Business and Biodiversity Offsets Programme. 2012a. Standard on biodiversity offsets. BBOP. <http://bbop.forest-trends.org/guidelines/Standard.pdf>.

[BBOP] Business and Biodiversity Offsets Programme. 2012b. Resource paper: No net loss and loss-gain calculations in biodiversity offsets. BBOP. http://bbop.forest-trends.org/guidelines/Resource_Paper_NNL.pdf.

[BBOP] Business and Biodiversity Offsets Programme. 2013. To No net loss and beyond: an overview of the Business and Biodiversity Offsets Programme (BBOP). <http://www.forest-trends.org/biodiversityoffsetprogram>.

Benkwitt CE, Wilson SK, Graham NAJ. 2020. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. *Nat Ecol Evol*. 4(7):919–926. doi: [10.1038/s41559-020-1203-9](https://doi.org/10.1038/s41559-020-1203-9).

Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, Hilmi N, Jiao N, Karim MS, Levin L, et al. 2019. Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate, H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegria, M. Nicolai, O. Okem, et al. eds. Intergovern Panel Clim Change. Cambridge; p. 447–588.

Birrer S, Zellweger-Fischer J, Stoeckli S, Korner-Nievergelt F, Balmer O, Jenny M, Pfiffner L. 2014. Biodiversity at the farm scale: a novel credit point system. *Agric Ecosyst Environ*. 197:195–203. doi: [10.1016/j.agee.2014.08.008](https://doi.org/10.1016/j.agee.2014.08.008).

Blowes SA, Supp SR, Antão LH, Bates A, Bruelheide H, Chase JM, Moyes F, Magurran A, McGill B, Myers-Smith IH, et al. 2019. The geography of biodiversity change in marine and terrestrial assemblages. *Science* (1979). 366 (6463):339–345. doi: [10.1126/science.aaw1620](https://doi.org/10.1126/science.aaw1620).

BNP Paribas. 2023. BNP Paribas partners with underwater gardens to promote ocean regeneration. https://cib.bnpparibas/_bnp-paribas-partners-with-underwater-gardens/.

Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE. 2019. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. *Front Ecol Environ*. 17(8):445–454. doi: [10.1002/fee.2088](https://doi.org/10.1002/fee.2088).

Brierley AS, Kingsford MJ. 2009. Impacts of climate change on marine organisms and ecosystems. *Curr Biol*. 19(14): R602–R614. doi: [10.1016/j.cub.2009.05.046](https://doi.org/10.1016/j.cub.2009.05.046).

Brown AL, Anastasiou DE, Schul M, MacVittie S, Spiers LJ, Meyer JL, Manfrino C, Frazer TK. 2022. Mixtures of genotypes increase disease resistance in a coral nursery. *Sci Rep*. 12(1). doi: [10.1038/s41598-022-23457-6](https://doi.org/10.1038/s41598-022-23457-6).

Bryan BA, Runting RK, Capon T, Perring MP, Cunningham SC, Kragt ME, Nolan M, Law EA, Renwick AR, Eber S, et al. 2016. Designer policy for carbon and biodiversity co-benefits under global change. *Nat Clim Chang*. 6(3):301–305. doi: [10.1038/nclimate2874](https://doi.org/10.1038/nclimate2874).

Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne PW, Trisos C, Romero J, Aldunce P, Barrett K, Blanco G, et al. 2023. IPCC, 2023: climate change 2023: synthesis report. In [core writing team, H. Lee and J. Romero (eds.)] Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland. P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J. J. Pereira, R. Pichs-Madruga, S. K. Rose, Y. Saheb, et al. eds. doi: [10.59327/IPCC/AR6-9789291691647](https://doi.org/10.59327/IPCC/AR6-9789291691647).

CBD UN. 2022. Kunming-Montreal global biodiversity framework: draft decision submitted by the president. United Nations Environment Programme Convention on Biological Diversity. <https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf>.

Chiavacci SJ, Pindilli EJ. 2018. A database of biodiversity and habitat quantification tools used in market-based conservation. Reston, VA, USA: Reston U.S. Geological Survey.

Convention on Biological Diversity. 2024a. Biodiversity and climate change. <https://www.cbd.int/doc/c/0e90/5901/8f0161248348f0f8de760f20/cop-16-l-24-en.pdf>.

Convention on Biological Diversity. 2024b. Conservation and sustainable use of marine and coastal biodiversity and of island biodiversity. <https://www.cbd.int/doc/c/a3db/18e3/93b0f249f3fe554208c6fc28/cop-16-l-17-en.pdf>.

Convention on Biological Diversity. 2024c. Resource mobilization. <https://www.cbd.int/doc/c/e25c/140d/770a8d08c362c16a10b9c5ad/cop-16-l-34-en.pdf>.

Coppapi M, Zanella C, Rossi S. 2019. The importance of coastal gorgonians in the blue carbon budget. *Sci Rep*. 9 (1):13550. doi: [10.1038/s41598-019-49797-4](https://doi.org/10.1038/s41598-019-49797-4).

Di Sacco A, Hardwick KA, Blakesley D, Brancalion PHS, Breman E, Cecilio Rebola L, Chomba S, Dixon K, Elliott S, Ruyonga G, et al. 2021. Ten Golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. *Glob Chang Biol*. 27(7):1328–1348. doi: [10.1111/gcb.15498](https://doi.org/10.1111/gcb.15498).

Droste N, Alkan Olsson J, Hanson H, Knaggård Å, Lima G, Lundmark L, Thoni T, Zelli F. 2022. A global overview

of biodiversity offsetting governance. *J Environ Manage.* 316:115231. doi: [10.1016/j.jenvman.2022.115231](https://doi.org/10.1016/j.jenvman.2022.115231).

Drury C, Lirman D. 2017. Making biodiversity work for coral reef restoration. *Biodiversity.* 18(1):23–25. doi: [10.1080/14888386.2017.1318094](https://doi.org/10.1080/14888386.2017.1318094).

Duarte CM, Agusti S, Barbier E, Britten GL, Castilla JC, Gattuso JP, Fulweiler RW, Hughes TP, Knowlton N, Lovelock CE, et al. 2020. Rebuilding marine life. *Nature.* 580(7801):39–51. doi: [10.1038/s41586-020-2146-7](https://doi.org/10.1038/s41586-020-2146-7).

Duarte CM, Dennison WC, Orth RJW, Carruthers TJB. 2008. The charisma of coastal ecosystems: addressing the imbalance. Preprint at Springer New York. [10.1007/s12237-008-9038-7](https://doi.org/10.1007/s12237-008-9038-7).

Ducros A, Steele P. 2022. Biocredits to finance nature and people: emerging lessons (IIED).

Emmett Duffy J. 2009. Why biodiversity is important to the functioning of real-world ecosystems. *Front Ecol Environ.* 7(8):437–444. doi: [10.1890/070195](https://doi.org/10.1890/070195).

Emmett Duffy J, Godwin CM, Cardinale BJ. 2017. Biodiversity effects in the wild are common and as strong as key drivers of productivity. *Nature.* 549(7671):261–264. doi: [10.1038/nature23886](https://doi.org/10.1038/nature23886).

European Commission. 2020. EU biodiversity strategy for 2030. Bringing nature back into our lives. Brussels: European union.

Fawzy S, Osman AI, Doran J, Rooney DW. 2020. Strategies for mitigation of climate change: a review intergovernmental panel on climate change. *Environ Chem Lett.* 18(6):2069–2094. doi: [10.1007/s10311-020-01059-w](https://doi.org/10.1007/s10311-020-01059-w).

Feng Y, Schmid B, Loreau M, Forrester DI, Fei S, Zhu J, Tang Z, Zhu J, Hong P, Ji C, et al. 2022. Multispecies forest plantations outyield monocultures across a broad range of conditions. *Science(1979).* 376:865–868. doi: [10.1126/science.abm6363](https://doi.org/10.1126/science.abm6363).

Fodrie FJ, Rodriguez AB, Gittman RK, Grabowski JH, Lindquist NL, Peterson CH, Piehler MF, Ridge JT. 2017. Oyster reefs as carbon sources and sinks. *Proceedings of the Royal Society B: Biological Sciences.* 284. doi: [10.1098/rspb.2017.0891](https://doi.org/10.1098/rspb.2017.0891).

Galik CS, Jackson RB. 2009. Risks to forest carbon offset projects in a changing climate. *For Ecol Manage.* 257(11):2209–2216. doi: [10.1016/j.foreco.2009.03.017](https://doi.org/10.1016/j.foreco.2009.03.017).

Gonçalves B, Marques A, Soares AMVDM, Pereira HM. 2015. Biodiversity offsets: from current challenges to harmonized metrics. *Curr Opin Environ Sustain.* 14:61–67. doi: [10.1016/j.cosust.2015.03.008](https://doi.org/10.1016/j.cosust.2015.03.008).

Graham NAJ, Nash KL. 2013. The importance of structural complexity in coral reef ecosystems. *Coral Reefs.* 32(2):315–326. doi: [10.1007/s00338-012-0984-y](https://doi.org/10.1007/s00338-012-0984-y).

Gribben PE, Angelini C, Altieri AH, Bishop MJ, Thomsen MS, Bulleri F. 2019. Facilitation cascades in marine ecosystems: a synthesis and future directions. In: Hawkins SJ, Allcock AL, Bates AE, Firth LB, Smith IP, Swearer SE, Todd PA, editors. *Oceanography and marine biology* (CRC press); p. 127–168. doi: [10.1201/9780429026379-3](https://doi.org/10.1201/9780429026379-3).

Hall LS, Krausman PR, Morrison ML. 1997. The habitat concept and a plea for standard terminology. *Wildl Soc Bull.* 25:173–182.

Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecol Monogr.* 75(1):3–35. doi: [10.1890/04-0922](https://doi.org/10.1890/04-0922).

Horoszowski-Fridman Y, Bréthes JC, Rahmani N, Rinkevich B. 2015. Marine silviculture: incorporating ecosystem engineering properties into reef restoration acts. *Ecol Eng.* 82:201–213. doi: [10.1016/j.ecoleng.2015.04.104](https://doi.org/10.1016/j.ecoleng.2015.04.104).

Hua F, Adrian Bruijnzeel L, Meli P, Martin PA, Zhang J, Nakagawa S, Miao X, Wang W, McEvoy C, Peña-Arancibia JL, et al. 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. *Science(1979).* 376:839–844. doi: [10.1126/science.abl4649](https://doi.org/10.1126/science.abl4649).

Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, Von Oheimb G, Yang X, et al. 2018. Impacts of species richness on productivity in a large-scale subtropical forest experiment. *Science (1979).* 362(6410):80–83. doi: [10.1126/science.aat6405](https://doi.org/10.1126/science.aat6405).

Huffmyer AS, Bean NK, Majerová E, Harris CI, Drury C. 2023. Variable intraspecific genetic diversity effects impact thermal tolerance in a reef-building coral. *Coral Reefs.* 42(1):119–129. doi: [10.1007/s00338-022-02320-0](https://doi.org/10.1007/s00338-022-02320-0).

Hughes AR, Stachowicz JJ. 2004. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. *Proc Natl Acad Sci USA.* 101(24):8998–9002. doi: [10.1073/pnas.0402642101](https://doi.org/10.1073/pnas.0402642101).

James K, Macreadie PI, Burdett HL, Davies I, Kamenos NA. 2024. It's time to broaden what we consider a 'blue carbon ecosystem'. *Global Change Biol.* 30(5). doi: [10.1111/gcb.17261](https://doi.org/10.1111/gcb.17261).

Jones CG, Lawton JH, Shachak M, Organisms M. 1994. Organisms as ecosystem engineers. *Oikos.* 69:373–386.

Kangas J, Ollikainen M. 2023. Reforming a pre-existing biodiversity conservation scheme: promoting climate co-benefits by a carbon payment. *Ambio.* 52:1847–1860. doi: [10.1007/s13280-023-01833-4](https://doi.org/10.1007/s13280-023-01833-4).

Kleypas J, Allemand D, Anthony K, Baker AC, Beck MW, Hale LZ, Hilmi N, Hoegh-Guldberg O, Hughes T, Kaufman L, et al. 2021. Designing a blueprint for coral reef survival. *Biol Conserv.* 257:109107. doi: [10.1016/j.biocon.2021.109107](https://doi.org/10.1016/j.biocon.2021.109107).

Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. *Science.* 304(5677):1623–1627. doi: [10.1126/science.1097396](https://doi.org/10.1126/science.1097396).

Lee SY, Hamilton S, Barbier EB, Primavera J, Lewis RR. 2019. Better restoration policies are needed to conserve mangrove ecosystems. *Nat Ecol Evol.* 3(6):870–872. doi: [10.1038/s41559-019-0861-y](https://doi.org/10.1038/s41559-019-0861-y).

Lindenmayer DB, Crane M, Evans MC, Maron M, Gibbons P, Bekessy S, Blanchard W. 2017. The anatomy of a failed offset. *Biol Conserv.* 210:286–292. doi: [10.1016/j.biocon.2017.04.022](https://doi.org/10.1016/j.biocon.2017.04.022).

Liu CLC, Kuchma O, Krutovsky KV. 2018. Mixed-species versus monocultures in plantation forestry: development, benefits, ecosystem services and perspectives for the future. *Glob Ecol Conserv.* 15:e00419. doi: [10.1016/j.gecco.2018.e00419](https://doi.org/10.1016/j.gecco.2018.e00419).

Liu X, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang Z, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, et al. 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. *Proc Royal Soc B: Biol Sci.* 285. doi: [10.1098/rspb.2018.1240](https://doi.org/10.1098/rspb.2018.1240).

Loreau M. 2010. Linking biodiversity and ecosystems: towards a unifying ecological theory. *Phil Trans R Soc B Biol Sci.* 365(1537):49–60. doi: [10.1098/rstb.2009.0155](https://doi.org/10.1098/rstb.2009.0155).

Macreadie PI, Costa MDP, Atwood TB, Friess DA, Kelleway JJ, Kennedy H, Lovelock CE, Serrano O,

Duarte CM. 2021. Blue carbon as a natural climate solution. *Nat Rev Earth Environ.* 2(12):826–839. doi: [10.1038/s43017-021-00224-1](https://doi.org/10.1038/s43017-021-00224-1).

Maron M, Brownlie S, Bull JW, Evans MC, Von Hase A, Quétier F, Watson JEM, Gordon A. 2018. The many meanings of no net loss in environmental policy. *Nat Sustain.* 1:19–27. doi: [10.1038/s41893-017-0007-7](https://doi.org/10.1038/s41893-017-0007-7).

Maron M, Ives CD, Kujala H, Bull JW, Maseyk FJF, Bekessy S, Gordon A, Watson JEM, Lentini PE, Gibbons P, et al. 2016. Taming a wicked problem: resolving controversies in biodiversity offsetting. *Bioscience.* 66(6):489–498. doi: [10.1093/biosci/biw038](https://doi.org/10.1093/biosci/biw038).

Meyer E, Davies S, Wang S, Willis BL, Abrego D, Juenger TE, Matz MV. 2009. Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral *Acropora millepora*. *Mar Ecol Prog Ser.* 392:81–92. doi: [10.3354/meps08208](https://doi.org/10.3354/meps08208).

Moilanen A, van Teeffelen AJA, Ben-Haim Y, Ferrier S. 2009. How much compensation is enough? A framework for incorporating uncertainty and time discounting when calculating offset ratios for impacted habitat. *Restor Ecol.* 17:470–478. doi: [10.1111/j.1526-100X.2008.00382.x](https://doi.org/10.1111/j.1526-100X.2008.00382.x).

Nash KL, Graham NAJ, Jennings S, Wilson SK, Bellwood DR, Angeler D. 2016. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. *J Appl Ecol.* 53(3):646–655. doi: [10.1111/1365-2664.12430](https://doi.org/10.1111/1365-2664.12430).

Noss R. 1990. Indicators for monitoring biodiversity: a hierarchical approach. *Conserv Biol.* 4(4):355–364. doi: [10.1111/j.1523-1739.1990.tb00309.x](https://doi.org/10.1111/j.1523-1739.1990.tb00309.x).

Noss RF, Cooperrider A. 1994. Saving nature's legacy: protecting and restoring biodiversity. Washington DC, USA: Island Press.

Nyström M. 2006. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. *AMBIO: A J Hum Environ.* 35(1):30–35. doi: [10.1579/0044-7447-35.1.30](https://doi.org/10.1579/0044-7447-35.1.30).

Orejas C, Carreiro-Silva M, Mohn C, Reimer J, Samaai T, Allcock AL, Rossi S. 2022. Marine animal forests of the world: definition and characteristics. *Res Ideas Outcomes.* 8. doi: [10.3897/rio.8.e96274](https://doi.org/10.3897/rio.8.e96274).

Paoli C, Montefalcone M, Morri C, Vassallo P, Bianchi CN. 2017. Ecosystem functions and services of the marine animal forests. In: Rossi S, Bramanti L, Gori A, Orejas C, editors. *Marine animal forests.* Springer International Publishing; p. 1271–1312. [10.1007/978-3-319-21012-4_38](https://doi.org/10.1007/978-3-319-21012-4_38).

Perry CT, Edinger EN, Kench PS, Murphy GN, Smithers SG, Steneck RS, Mumby PJ. 2012. Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. *Coral Reefs.* 31:853–868. doi: [10.1007/s00338-012-0901-4](https://doi.org/10.1007/s00338-012-0901-4).

Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, et al. 2015. Diversity enhances carbon storage in tropical forests. *Global Ecol Biogeogr.* 24 (11):1314–1328. doi: [10.1111/geb.12364](https://doi.org/10.1111/geb.12364).

Porras I, Steele P. 2020. Making the market work for nature: how biocredits can protect biodiversity and reduce poverty (IIED).

Reusch TBH, Ehlers A, Hämmerli A, Worm B. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. *Proceedings of the National Academy of Sciences 102.* p. 2826–2831. [10.1073/pnas.0500008102](https://doi.org/10.1073/pnas.0500008102).

Rinkevich B. 2015a. Climate change and active reef restoration—ways of constructing the “reefs of Tomorrow”. *J Mar Sci Eng.* 3(1):111–127. doi: [10.3390/jmse3010111](https://doi.org/10.3390/jmse3010111).

Rinkevich B. 2015b. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration. *J Environ Manage.* 162:199–205. doi: [10.1016/j.jenvman.2015.07.028](https://doi.org/10.1016/j.jenvman.2015.07.028).

Rinkevich B. 2024. A conceptual approach for an innovative marine animal forest apparatus that facilitates carbon sequestration and biodiversity enhancement. *Science of the total environment* 947. doi: [10.1016/j.scitotenv.2024.174353](https://doi.org/10.1016/j.scitotenv.2024.174353).

Roe S, Streck C, Beach R, Busch J, Chapman M, Daioglou V, Deppermann A, Emmet JDJ, Jens B, Oliver E, et al. 2021. Based measures to mitigate climate change: potential and feasibility by country. *Glob Chang Biol.* 27(23):6025–6058. doi: [10.1111/gcb.15873](https://doi.org/10.1111/gcb.15873).

Rossi S. 2013. The destruction of the “animal forests” in the oceans: towards an over-simplification of the benthic ecosystems. *Ocean Coast Manag.* 84:77–85. doi: [10.1016/j.ocecoaman.2013.07.004](https://doi.org/10.1016/j.ocecoaman.2013.07.004).

Rossi S, Bramanti L, Broglio E, Gili JM. 2012. Trophic impact of long-lived species indicated by population dynamics in the short-lived hydrozoan *Eudendrium racemosum*. *Mar Ecol Prog Ser.* 467:97–111. doi: [10.3354/meps09848](https://doi.org/10.3354/meps09848).

Rossi S, Bramanti L, Gori A, Orejas C. 2017. Animal forests of the world: an overview. In: Rossi S, Bramanti L, Gori A, Orejas C, editors. *Marine animal forests.* Springer International Publishing; p. 1–28. [10.1007/978-3-319-21012-4_1](https://doi.org/10.1007/978-3-319-21012-4_1).

Rossi S, Bramanti L, Horta P, Allcock L, Carreiro-Silva M, Coppari M, Denis V, Hadjioannou L, Isla E, Jimenez C, et al. 2022. Protecting global marine animal forests. *Science* (1979). 376(6596):929. doi: [10.1126/science.abq7583](https://doi.org/10.1126/science.abq7583).

Rossi S, Coppari M, Viladrich N. 2017. Benthic-pelagic coupling: new perspectives in the animal forests. In: Rossi S, Bramanti L, Gori A, Covadonga O, editors. *Mar Anim For.* Springer; p. 855–885.

Rossi S, Rizzo L. 2020. Marine animal forests as carbon immobilizers or why we should preserve these structures. In Rossi S, Bramanti L, editor. *Perspectives on the marine animal forests of the world.* Springer; p. 333–400.

Schuldt A, Liu X, Buscot F, Bruelheide H, Erfmeier A, He JS, Klein AM, Ma K, Scherer-Lorenzen M, Schmid B, et al. 2023. Carbon–biodiversity relationships in a highly diverse subtropical forest. *Glob Chang Biol.* 29(18):5321–5333. doi: [10.1111/gcb.16697](https://doi.org/10.1111/gcb.16697).

Shi T, Zheng X, Zhang H, Wang Q, Zhong X. 2021. Coral reefs: potential blue carbon sinks for climate change mitigation. *Bull Chin Acad Sci.* 36:270–278. doi: [10.16418/j.issn.1000-3045.20210217102](https://doi.org/10.16418/j.issn.1000-3045.20210217102).

Shmuel Y, Ziv Y, Rinkevich B. 2022. Strahler ordering analyses on branching coral canopies: *stylophora pistillata* as a case study. *J Mar Sci Eng.* 10. doi: [10.3390/jmse10010121](https://doi.org/10.3390/jmse10010121).

Simon Z, Dorothée Herr AP. 2023. Harnessing biodiversity credits for people and planet. *Nat Finance.* 7–67. <https://www.naturemarkets.net/publications/harnessing-biodiversity-credits-for-people-and-planet>.

Tedersoo L, Sepping J, Morgunov AS, Kiik M, Esop K, Rosenvall R, Hardwick K, Breman E, Purdon R,

Groom B, et al. 2023. Towards a co-crediting system for carbon and biodiversity. *Plants People Planet*. 1–11. doi: [10.1002/ppp3.10405](https://doi.org/10.1002/ppp3.10405).

Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and ecosystem functioning. *Annu Rev Ecol Evol Syst*. 45(1):471–493. doi: [10.1146/annurev-ecolsys-120213-091917](https://doi.org/10.1146/annurev-ecolsys-120213-091917).

Topor ZM, Rasher DB, Duffy JE, Brandl SJ. 2019. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. *Conserv Lett*. 12(4):1–9. doi: [10.1111/conl.12638](https://doi.org/10.1111/conl.12638).

Torabi N, Bekessy SA. 2015. Bundling and stacking in bio-sequestration schemes: opportunities and risks identified by Australian stakeholders. *Ecosyst Serv*. 15:84–92. doi: [10.1016/j.ecoser.2015.08.001](https://doi.org/10.1016/j.ecoser.2015.08.001).

United Nations. 2015. General assembly resolution A/RES/70/1. Transforming our world, the 2030 agenda for sustainable development. United Nations. <https://sdgs.un.org/2030agenda>.

United Nations. 2019. Resolution adopted by the general assembly on 1 March 2019. United Nations; <https://www.kimberleyprocess.com/en/resolution-adopted-general-assembly-1-march-2019>.

Vaissière A, Levrel H, Scemama P. 2017. Biodiversity offsetting: clearing up misunderstandings between conservation and economics to take further action. *Biol Conserv*. 206:258–262. doi: [10.1016/j.biocon.2016.11.036](https://doi.org/10.1016/j.biocon.2016.11.036).

Valenca D, Tenison-Collins E, Eijs L, Lewis L, Marchetti M, Porcheron M, Sierra García P, Peek WS. 2024. On track or off course? Assessing progress towards the 30X30 target for the ocean. <https://assets.bbhub.io/dotorg/sites/64/2024/10/On-track-or-off-course.pdf>.

Vardi T, Hoot WC, Levy J, Shaver E, Winters RS, Banaszak AT, Baums IB, Chamberland VF, Cook N, Gulkosky D, et al. 2021. Six priorities to advance the science and practice of coral reef restoration worldwide. *Restor Ecol*. 29(8):1–7. doi: [10.1111/rec.13498](https://doi.org/10.1111/rec.13498).

Ware JR, Smith SV, Reaka-Kudla ML. 1991. Coral reefs: sources or sinks of atmospheric CO₂? *Coral Reefs*. 11(3):127–130. doi: [10.1007/BF00255465](https://doi.org/10.1007/BF00255465).

World Economic Forum. 2022. Biodiversity credits: unlocking financial markets for nature-positive outcomes. https://www3.weforum.org/docs/WEF_Biodiversity_Credit_Market_2022.pdf.

Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, et al. 2006. Impacts of biodiversity loss on ocean ecosystem services. *Science* (1979). 314(5800):787–790. doi: [10.1126/science.1132294](https://doi.org/10.1126/science.1132294).